Publications by authors named "Wyne P Lee"

79 Publications

Tetrahydrofuran-Based Transient Receptor Potential Ankyrin 1 (TRPA1) Antagonists: Ligand-Based Discovery, Activity in a Rodent Asthma Model, and Mechanism-of-Action via Cryogenic Electron Microscopy.

J Med Chem 2021 Apr 22;64(7):3843-3869. Epub 2021 Mar 22.

Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States.

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium-permeable ion channel highly expressed in the primary sensory neurons functioning as a polymodal sensor for exogenous and endogenous stimuli and has generated widespread interest as a target for inhibition due to its implication in neuropathic pain and respiratory disease. Herein, we describe the optimization of a series of potent, selective, and orally bioavailable TRPA1 small molecule antagonists, leading to the discovery of a novel tetrahydrofuran-based linker. Given the balance of physicochemical properties and strong target engagement in a rat AITC-induced pain assay, compound was progressed into a guinea pig ovalbumin asthma model where it exhibited significant dose-dependent reduction of inflammatory response. Furthermore, the structure of the TRPA1 channel bound to compound was determined via cryogenic electron microscopy to a resolution of 3 Å, revealing the binding site and mechanism of action for this class of antagonists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c02023DOI Listing
April 2021

A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment.

J Exp Med 2021 Apr;218(4)

Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA.

Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20201637DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918756PMC
April 2021

NINJ1 mediates plasma membrane rupture during lytic cell death.

Nature 2021 Mar 20;591(7848):131-136. Epub 2021 Jan 20.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA, USA.

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1 macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1 macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1 mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03218-7DOI Listing
March 2021

The peptide symporter SLC15a4 is essential for the development of systemic lupus erythematosus in murine models.

PLoS One 2021 14;16(1):e0244439. Epub 2021 Jan 14.

DiCE Molecules, South San Francisco, CA, United States of America.

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease representing a serious unmet medical need. The disease is associated with the loss of self-tolerance and exaggerated B cell activation, resulting in autoantibody production and the formation of immune complexes that accumulate in the kidney, causing glomerulonephritis. TLR7, an important mediator of the innate immune response, drives the expression of type-1 interferon (IFN), which leads to expression of type-1 IFN induced genes and aggravates lupus pathology. Because the lysosomal peptide symporter slc15a4 is critically required for type-1 interferon production by pDC, and for certain B cell functions in response to TLR7 and TLR9 signals, we considered it as a potential target for pharmacological intervention in SLE. We deleted the slc15a4 gene in C57BL/6, NZB, and NZW mice and found that pristane-challenged slc15a4-/- mice in the C57BL/6 background and lupus prone slc15a4-/- NZB/W F1 mice were both completely protected from lupus like disease. In the NZB/W F1 model, protection persisted even when disease development was accelerated with an adenovirus encoding IFNα, emphasizing a broad role of slc15a4 in disease initiation. Our results establish a non-redundant function of slc15a4 in regulating both innate and adaptive components of the immune response in SLE pathobiology and suggest that it may be an attractive drug target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244439PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808665PMC
January 2021

Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage.

Commun Biol 2020 Nov 19;3(1):687. Epub 2020 Nov 19.

Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA.

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-01407-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677402PMC
November 2020

Integration of innate immune signalling by caspase-8 cleavage of N4BP1.

Nature 2020 11 24;587(7833):275-280. Epub 2020 Sep 24.

Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA.

Mutations in the death receptor FAS or its ligand FASL cause autoimmune lymphoproliferative syndrome, whereas mutations in caspase-8 or its adaptor FADD-which mediate cell death downstream of FAS and FASL-cause severe immunodeficiency in addition to autoimmune lymphoproliferative syndrome. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses, but the mechanisms that underlie immunodeficiency remain undefined. Here we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice increased the production of select cytokines upon stimulation of the Toll-like receptor (TLR)1-TLR2 heterodimer (referred to herein as TLR1/2), TLR7 or TLR9, but not upon engagement of TLR3 or TLR4. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages, owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, the impaired production of cytokines in response to TLR3 and TLR4 stimulation of caspase-8-deficient macrophages was largely rescued by co-deletion of N4BP1. Thus, the persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumour necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by mutations of FADD and caspase-8.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2796-5DOI Listing
November 2020

The kinase IRAK4 promotes endosomal TLR and immune complex signaling in B cells and plasmacytoid dendritic cells.

Sci Signal 2020 06 2;13(634). Epub 2020 Jun 2.

Research, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.

The dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs). Correspondingly, the expression of interferon (IFN)-responsive genes (IRGs) in cells and in mice was positively regulated by the kinase activity of IRAK4. Both IRAK4 and BTK inhibition reduced the TLR7-mediated differentiation of human memory B cells into plasmablasts. TLR7-dependent inflammatory responses were differentially regulated by IRAK4 and BTK by cell type: In pDCs, IRAK4 positively regulated NF-κB and MAPK signaling, whereas in B cells, NF-κB and MAPK pathways were regulated by both BTK and IRAK4. In the pristane-induced lupus mouse model, inhibition of IRAK4 reduced the expression of IRGs during disease onset. Mice engineered to express kinase-deficient IRAK4 were protected from both chemical (pristane-induced) and genetic (NZB/W_F1 hybrid) models of lupus development. Our findings suggest that kinase inhibitors of IRAK4 might be a therapeutic in patients with SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aaz1053DOI Listing
June 2020

Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP.

Immunity 2020 02 11;52(2):357-373.e9. Epub 2020 Feb 11.

Genentech Inc., South San Francisco, CA, USA. Electronic address:

Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK. Blockade of MerTK resulted in accumulation of apoptotic cells within tumors and triggered a type I interferon response. Treatment of tumor-bearing mice with anti-MerTK antibody stimulated T cell activation and synergized with anti-PD-1 or anti-PD-L1 therapy. The anti-tumor effect induced by anti-MerTK treatment was lost in Sting mice, but not in Cgas mice. Abolishing cGAMP production in Cgas tumor cells, depletion of extracellular ATP, or inactivation of the ATP-gated P2X7R channel also compromised the effects of MerTK blockade. Mechanistically, extracellular ATP acted via P2X7R to enhance the transport of extracellular cGAMP into macrophages and subsequent STING activation. Thus, MerTK blockade increases tumor immunogenicity and potentiates anti-tumor immunity, which has implications for cancer immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2020.01.014DOI Listing
February 2020

An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma.

Cell 2019 Oct;179(2):417-431.e19

Department of Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active β-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human β-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a β-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.09.009DOI Listing
October 2019

Function of CSF1 and IL34 in Macrophage Homeostasis, Inflammation, and Cancer.

Front Immunol 2019 4;10:2019. Epub 2019 Sep 4.

Genentech, South San Francisco, CA, United States.

Colony-stimulating factor 1 (CSF1) and interleukin 34 (IL34) signal the CSF1 receptor to regulate macrophage differentiation. Studies in IL34- or CSF1-deficient mice have revealed that IL34 function is limited to the central nervous system and skin during development. However, the roles of IL34 and CSF1 at homeostasis or in the context of inflammatory diseases or cancer in wild-type mice have not been clarified . By neutralizing CSF1 and/or IL34 in adult mice, we identified that they play important roles in macrophage differentiation, specifically in steady-state microglia, Langerhans cells, and kidney macrophages. In several inflammatory models, neutralization of both CSF1 and IL34 contributed to maximal disease protection. However, in a myeloid cell-rich tumor model, CSF1 but not IL34 was required for tumor-associated macrophage accumulation and immune homeostasis. Analysis of human inflammatory conditions reveals IL34 upregulation that may account for the protection requirement of IL34 blockade. Furthermore, evaluation of IL34 and CSF1 blockade treatment during infection reveals no substantial safety concerns. Thus, IL34 and CSF1 play non-redundant roles in macrophage differentiation, and therapeutic intervention targeting IL34 and/or CSF1 may provide an effective treatment in macrophage-driven immune-pathologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736990PMC
October 2020

RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases.

Cell Death Differ 2020 01 17;27(1):161-175. Epub 2019 May 17.

Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.

The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases. Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1 D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibody-induced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression and metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41418-019-0347-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206119PMC
January 2020

LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation.

J Immunol 2019 01 3;202(1):183-193. Epub 2018 Dec 3.

Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080.

Both common and rare genetic variants of laccase domain-containing 1 (, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation. Following oral administration of , LACC1 knockout (KO) mice had more severe colon lesions compared with wildtype (WT) controls. Immunization with collagen II, a collagen-induced arthritis (CIA) model, resulted in an accelerated onset of arthritis and significantly worse arthritis and inflammation in LACC1 KO mice. Similar results were obtained in a mannan-induced arthritis model. Serum and local TNF in CIA paws and colons were significantly increased in LACC1 KO mice compared with WT controls. The percentage of IL-17A-producing CD4 T cells was elevated in LACC1 KO mice undergoing CIA as well as aged mice compared with WT controls. Neutralization of IL-17, but not TNF, prevented enhanced mannan-induced arthritis in LACC1 KO mice. These data provide new mechanistic insight into the function of LACC1 in regulating TNF and IL-17 during inflammatory responses. We hypothesize that these effects contribute to immune-driven pathologies observed in individuals carrying variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1800636DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305794PMC
January 2019

Lung-restricted inhibition of Janus kinase 1 is effective in rodent models of asthma.

Sci Transl Med 2018 11;10(468)

Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.

Preclinical and clinical evidence indicates that a subset of asthma is driven by type 2 cytokines such as interleukin-4 (IL-4), IL-5, IL-9, and IL-13. Additional evidence predicts pathogenic roles for IL-6 and type I and type II interferons. Because each of these cytokines depends on Janus kinase 1 (JAK1) for signal transduction, and because many of the asthma-related effects of these cytokines manifest in the lung, we hypothesized that lung-restricted JAK1 inhibition may confer therapeutic benefit. To test this idea, we synthesized iJak-381, an inhalable small molecule specifically designed for local JAK1 inhibition in the lung. In pharmacodynamic models, iJak-381 suppressed signal transducer and activator of transcription 6 activation by IL-13. Furthermore, iJak-381 suppressed ovalbumin-induced lung inflammation in both murine and guinea pig asthma models and improved allergen-induced airway hyperresponsiveness in mice. In a model driven by human allergens, iJak-381 had a more potent suppressive effect on neutrophil-driven inflammation compared to systemic corticosteroid administration. The inhibitor iJak-381 reduced lung pathology, without affecting systemic Jak1 activity in rodents. Our data show that local inhibition of Jak1 in the lung can suppress lung inflammation without systemic Jak inhibition in rodents, suggesting that this strategy might be effective for treating asthma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aao2151DOI Listing
November 2018

Micro-CT imaging and structural analysis of glomeruli in a model of Adriamycin-induced nephropathy.

Am J Physiol Renal Physiol 2019 01 26;316(1):F76-F89. Epub 2018 Sep 26.

Biomedical Imaging, Genentech, South San Francisco, California.

Glomeruli number and size are important for determining the pathogenesis of glomerular disease, chronic kidney disease, and hypertension. Moreover, renal injury can occur in specific cortical layers and alter glomerular spatial distribution. In this study, we present a comprehensive structural analysis of glomeruli in a model of Adriamycin (doxorubicin) nephropathy. Glomeruli are imaged (micro-CT at 10 × 10 × 10 μm) in kidney specimens from C57Bl/6 mouse cohorts: control treated with saline ( n = 9) and Adriamycin treated with 20 mg/kg Adriamycin ( n = 7). Several indices were examined, including glomerular number, glomerular volume, glomerular volume heterogeneity, and spatial density at each glomerulus and in each cortical layer (superficial, midcortical, and juxtamedullary). In the Adriamycin-treated animals, glomerular number decreased significantly in the left kidney [control: 8,298 ± 221, Adriamycin: 6,781 ± 630 (mean ± SE)] and right kidney (control: 7,317 ± 367, Adriamycin: 5,522 ± 508), and glomerular volume heterogeneity increased significantly in the left kidney (control: 0.642 ± 0.015, Adriamycin: 0.786 ± 0.018) and right kidney (control: 0.739 ± 0.016, Adriamycin: 0.937 ± 0.023). Glomerular spatial density was not affected. Glomerular volume heterogeneity increased significantly in the superficial and midcortical layers of the Adriamycin cohort. Adriamycin did not affect glomerular volume or density metrics in the juxtamedullary region, suggesting a compensatory mechanism of juxtamedullary glomeruli to injury in the outer cortical layers. Left/right asymmetry was observed in kidney size and various glomeruli metrics. The methods presented here can be used to evaluate renal disease models with subtle changes in glomerular endowment locally or across the entire kidney, and they provide an imaging tool to investigate diverse interventions and therapeutic drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00331.2018DOI Listing
January 2019

The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors.

Sci Signal 2018 09 11;11(547). Epub 2018 Sep 11.

Department of Discovery Oncology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

The Hippo signaling pathway regulates organ size and plays critical roles in maintaining tissue growth, homeostasis, and regeneration. Dysregulated in a wide spectrum of cancers, in mammals, this pathway is regulated by two key effectors, YAP and TAZ, that may functionally overlap. We found that TAZ promoted liver inflammation and tumor development. The expression of TAZ, but not YAP, in human liver tumors positively correlated with the expression of proinflammatory cytokines. Hyperactivated TAZ induced substantial myeloid cell infiltration into the liver and the secretion of proinflammatory cytokines through a TEAD-dependent mechanism. Furthermore, tumors with hyperactivated YAP and TAZ had distinct transcriptional signatures, which included the increased expression of inflammatory cytokines in TAZ-driven tumors. Our study elucidated a previously uncharacterized link between TAZ activity and inflammatory responses that influence tumor development in the liver.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aaj1757DOI Listing
September 2018

The tumor suppressor BAP1 cooperates with BRAFV600E to promote tumor formation in cutaneous melanoma.

Pigment Cell Melanoma Res 2019 03 24;32(2):269-279. Epub 2018 Sep 24.

Department of Discovery Oncology, Genentech, Inc., South San Francisco, California.

The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAF ) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1-null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild-type counterparts. Molecularly, Bap1-null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1-null tumors are completely responsive to BRAF- and MEK-targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcmr.12735DOI Listing
March 2019

Publisher Correction: Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy.

Sci Rep 2018 Aug 24;8(1):13055. Epub 2018 Aug 24.

Department of Immunology, Genentech, Inc, South San Francisco, CA, 94080, USA.

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-30162-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6109177PMC
August 2018

Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation.

J Exp Med 2018 09 22;215(9):2279-2288. Epub 2018 Aug 22.

Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA

Intracellular LPS sensing by caspase-4/5/11 triggers proteolytic activation of pore-forming gasdermin D (GSDMD), leading to pyroptotic cell death in Gram-negative bacteria-infected cells. Involvement of caspase-4/5/11 and GSDMD in inflammatory responses, such as lethal sepsis, makes them highly desirable drug targets. Using knock-in (KI) mouse strains, we herein provide genetic evidence to show that caspase-11 auto-cleavage at the inter-subunit linker is essential for optimal catalytic activity and subsequent proteolytic cleavage of GSDMD. Macrophages from caspase-11-processing dead KI mice ( ) exhibit defective caspase-11 auto-processing and phenocopy and caspase-11 enzymatically dead KI ( ) macrophages in attenuating responses to cytoplasmic LPS or Gram-negative bacteria infection. KI macrophages also fail to cleave GSDMD and are hypo-responsive to inflammasome stimuli, confirming that the GSDMD Asp residue is a nonredundant and indispensable site for proteolytic activation of GSDMD. Our data highlight the role of caspase-11 self-cleavage as a critical regulatory step for GSDMD processing and response against Gram-negative bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20180589DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122968PMC
September 2018

OTULIN limits cell death and inflammation by deubiquitinating LUBAC.

Nature 2018 07 27;559(7712):120-124. Epub 2018 Jun 27.

Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA.

OTULIN (OTU deubiquitinase with linear linkage specificity) removes linear polyubiquitin from proteins that have been modified by LUBAC (linear ubiquitin chain assembly complex) and is critical for preventing auto-inflammatory disease and embryonic lethality during mouse development. Here we show that OTULIN promotes rather than counteracts LUBAC activity by preventing its auto-ubiquitination with linear polyubiquitin. Thus, knock-in mice that express catalytically inactive OTULIN, either constitutively or selectively in endothelial cells, resembled LUBAC-deficient mice and died midgestation as a result of cell death mediated by TNFR1 (tumour necrosis factor receptor 1) and the kinase activity of RIPK1 (receptor-interacting protein kinase 1). Inactivation of OTULIN in adult mice also caused pro-inflammatory cell death. Accordingly, embryonic lethality and adult auto-inflammation were prevented by the combined loss of cell death mediators: caspase 8 for apoptosis and RIPK3 for necroptosis. Unexpectedly, OTULIN mutant mice that lacked caspase 8 and RIPK3 died in the perinatal period, exhibiting enhanced production of type I interferon that was dependent on RIPK1. Collectively, our results indicate that OTULIN and LUBAC function in a linear pathway, and highlight a previously unrecognized interaction between linear ubiquitination, regulators of cell death, and induction of type I interferon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0256-2DOI Listing
July 2018

Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy.

Sci Rep 2018 05 9;8(1):7348. Epub 2018 May 9.

Department of Immunology, Genentech, Inc, South San Francisco, CA, 94080, USA.

Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-25557-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943270PMC
May 2018

Tumor suppressor BAP1 is essential for thymic development and proliferative responses of T lymphocytes.

Sci Immunol 2018 04;3(22)

Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, USA.

Loss of function of the nuclear deubiquitinating enzyme BRCA1-associated protein-1 (BAP1) is associated with a wide spectrum of cancers. We report that tamoxifen-induced BAP1 deletion in adult mice resulted in severe thymic atrophy. BAP1 was critical for T cell development at several stages. In the thymus, BAP1 was required for progression through the pre-T cell receptor checkpoint. Peripheral T cells lacking BAP1 demonstrated a defect in homeostatic and antigen-driven expansion. Deletion of BAP1 resulted in suppression of E2F target genes and defects in cell cycle progression, which was dependent on the catalytic activity of BAP1, but did not require its interaction with host cell factor-1 (HCF-1). Loss of BAP1 led to increased monoubiquitination of histone H2A at Lys (H2AK119ub) throughout the T cell lineage, in particular in immature thymocytes, but did not alter trimethylation of histone H3 at Lys (H3K27me3). Deletion of BAP1 also abrogated B cell development in the bone marrow. Our findings uncover a nonredundant function for BAP1 in maintaining the lymphoid lineage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciimmunol.aal1953DOI Listing
April 2018

NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus.

Nat Commun 2018 01 12;9(1):179. Epub 2018 Jan 12.

Department of Immunology Discovery, Genentech, 1 DNA Way, South San Francisco, CA-94080, USA.

NF-κB-inducing kinase (NIK) mediates non-canonical NF-κB signaling downstream of multiple TNF family members, including BAFF, TWEAK, CD40, and OX40, which are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Here, we show that experimental lupus in NZB/W F1 mice can be treated with a highly selective and potent NIK small molecule inhibitor. Both in vitro as well as in vivo, NIK inhibition recapitulates the pharmacological effects of BAFF blockade, which is clinically efficacious in SLE. Furthermore, NIK inhibition also affects T cell parameters in the spleen and proinflammatory gene expression in the kidney, which may be attributable to inhibition of OX40 and TWEAK signaling, respectively. As a consequence, NIK inhibition results in improved survival, reduced renal pathology, and lower proteinuria scores. Collectively, our data suggest that NIK inhibition is a potential therapeutic approach for SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-02672-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766581PMC
January 2018

Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation.

J Exp Med 2017 Sep 4;214(9):2611-2628. Epub 2017 Aug 4.

Department of Neuroscience, Genentech, Inc., South San Francisco, CA

Loss-of-function mutations in cause frontotemporal dementia (FTD) with transactive response DNA-binding protein of 43 kD (TDP-43)-positive inclusions and neuronal ceroid lipofuscinosis (NCL). There are no disease-modifying therapies for either FTD or NCL, in part because of a poor understanding of how mutations in genes such as contribute to disease pathogenesis and neurodegeneration. By studying mice lacking progranulin (PGRN), the protein encoded by , we discovered multiple lines of evidence that PGRN deficiency results in impairment of autophagy, a key cellular degradation pathway. PGRN-deficient mice are sensitive to because of deficits in xenophagy, a specialized form of autophagy that mediates clearance of intracellular pathogens. Cells lacking PGRN display reduced autophagic flux, and pathological forms of TDP-43 typically cleared by autophagy accumulate more rapidly in PGRN-deficient neurons. Our findings implicate autophagy as a novel therapeutic target for -associated NCL and FTD and highlight the emerging theme of defective autophagy in the broader FTD/amyotrophic lateral sclerosis spectrum of neurodegenerative disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20160999DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584112PMC
September 2017

The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice.

J Immunol 2017 08 10;199(4):1238-1249. Epub 2017 Jul 10.

Department of Human Genetics, Genentech, Inc., South San Francisco, CA 94080.

Ox40 ligand (Ox40L) locus genetic variants are associated with the risk for systemic lupus erythematosus (SLE); however, it is unclear how Ox40L contributes to SLE pathogenesis. In this study, we evaluated the contribution of Ox40L and its cognate receptor, Ox40, using in vivo agonist and antagonist approaches in the NZB × NZW (NZB/W) F1 mouse model of SLE. Ox40 was highly expressed on several CD4 Th cell subsets in the spleen and kidney of diseased mice, and expression correlated with disease severity. Treatment of aged NZB/W F1 mice with agonist anti-Ox40 mAbs potently exacerbated renal disease, which was accompanied by activation of kidney-infiltrating T cells and cytokine production. The agonist mAbs also induced activation and inflammatory gene expression in splenic CD4 T cells, including IFN-regulated genes, increased the number of follicular helper T cells and plasmablasts in the spleen, and led to elevated levels of serum IgM and enhanced renal glomerular IgM deposition. In a type I IFN-accelerated lupus model, treatment with an antagonist Ox40:Fc fusion protein significantly delayed the onset of severe proteinuria and improved survival. These data support the hypothesis that the Ox40/Ox40L pathway drives cellular and humoral autoimmune responses during lupus nephritis in NZB/W F1 mice and emphasize the potential clinical value of targeting this pathway in human lupus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1700608DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544932PMC
August 2017

The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation.

Sci Signal 2017 Apr 18;10(475). Epub 2017 Apr 18.

Genentech Research, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

Tumor progression locus 2 (TPL2; also known as MAP3K8) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that phosphorylates the MAPK kinases MEK1 and MEK2 (MEK1/2), which, in turn, activate the MAPKs extracellular signal-regulated kinase 1 (ERK1) and ERK2 (ERK1/2) in macrophages stimulated through the interleukin-1 receptor (IL-1R), Toll-like receptors (TLRs), or the tumor necrosis factor receptor (TNFR). We describe a conserved and critical role for TPL2 in mediating the effector functions of neutrophils through the activation of the p38 MAPK signaling pathway. Gene expression profiling and functional studies of neutrophils and monocytes revealed a MEK1/2-independent branch point downstream of TPL2 in neutrophils. Biochemical analyses identified the MAPK kinases MEK3 and MEK6 and the MAPKs p38α and p38δ as downstream effectors of TPL2 in these cells. Genetic ablation of the catalytic activity of TPL2 or therapeutic intervention with a TPL2-specific inhibitor reduced the production of inflammatory mediators by neutrophils in response to stimulation with the TLR4 agonist lipopolysaccharide (LPS) in vitro, as well as in rodent models of inflammatory disease. Together, these data suggest that TPL2 is a drug target that activates not only MEK1/2-dependent but also MEK3/6-dependent signaling to promote inflammatory responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scisignal.aah4273DOI Listing
April 2017

Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFN-driven lupus nephritis.

JCI Insight 2017 04 6;2(7):e90111. Epub 2017 Apr 6.

Departments of Immunology Discovery.

Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton's tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.90111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374071PMC
April 2017

Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.

Proc Natl Acad Sci U S A 2017 04 28;114(15):3903-3908. Epub 2017 Mar 28.

Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080;

Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1621177114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393225PMC
April 2017

Potassium channels Kv1.3 and KCa3.1 cooperatively and compensatorily regulate antigen-specific memory T cell functions.

Nat Commun 2017 03 1;8:14644. Epub 2017 Mar 1.

Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.

Voltage-gated Kv1.3 and Ca-dependent KCa3.1 are the most prevalent K channels expressed by human and rat T cells. Despite the preferential upregulation of Kv1.3 over KCa3.1 on autoantigen-experienced effector memory T cells, whether Kv1.3 is required for their induction and function is unclear. Here we show, using Kv1.3-deficient rats, that Kv1.3 is involved in the development of chronically activated antigen-specific T cells. Several immune responses are normal in Kv1.3 knockout (KO) rats, suggesting that KCa3.1 can compensate for the absence of Kv1.3 under these specific settings. However, experiments with Kv1.3 KO rats and Kv1.3 siRNA knockdown or channel-specific inhibition of human T cells show that maximal T-cell responses against autoantigen or repeated tetanus toxoid stimulations require both Kv1.3 and KCa3.1. Finally, our data also suggest that T-cell dependency on Kv1.3 or KCa3.1 might be irreversibly modulated by antigen exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14644DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5337993PMC
March 2017

IL-22R Ligands IL-20, IL-22, and IL-24 Promote Wound Healing in Diabetic db/db Mice.

PLoS One 2017 26;12(1):e0170639. Epub 2017 Jan 26.

Department of Immunology, Genentech, South San Francisco, California, United States of America.

Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170639PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268431PMC
August 2017