Publications by authors named "Tokhir Dadaev"

33 Publications

Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study.

Eur Urol Oncol 2021 Jan 9. Epub 2021 Jan 9.

Institute of Biomedicine, University of Turku, Turku, Finland.

Background: Germline ATM mutations are suggested to contribute to predisposition to prostate cancer (PrCa). Previous studies have had inadequate power to estimate variant effect sizes.

Objective: To precisely estimate the contribution of germline ATM mutations to PrCa risk.

Design, Setting, And Participants: We analysed next-generation sequencing data from 13 PRACTICAL study groups comprising 5560 cases and 3353 controls of European ancestry.

Outcome Measurements And Statistical Analysis: Variant Call Format files were harmonised, annotated for rare ATM variants, and classified as tier 1 (likely pathogenic) or tier 2 (potentially deleterious). Associations with overall PrCa risk and clinical subtypes were estimated.

Results And Limitations: PrCa risk was higher in carriers of a tier 1 germline ATM variant, with an overall odds ratio (OR) of 4.4 (95% confidence interval [CI]: 2.0-9.5). There was also evidence that PrCa cases with younger age at diagnosis (<65 yr) had elevated tier 1 variant frequencies (p = 0.04). Tier 2 variants were also associated with PrCa risk, with an OR of 1.4 (95% CI: 1.1-1.7).

Conclusions: Carriers of pathogenic ATM variants have an elevated risk of developing PrCa and are at an increased risk for earlier-onset disease presentation. These results provide information for counselling of men and their families.

Patient Summary: In this study, we estimated that men who inherit a likely pathogenic mutation in the ATM gene had an approximately a fourfold risk of developing prostate cancer. In addition, they are likely to develop the disease earlier.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euo.2020.12.001DOI Listing
January 2021

Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

Nat Genet 2021 01 4;53(1):65-75. Epub 2021 Jan 4.

Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia.

Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00748-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148035PMC
January 2021

Relationship of self-reported body size and shape with risk for prostate cancer: A UK case-control study.

PLoS One 2020 17;15(9):e0238928. Epub 2020 Sep 17.

Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.

Introduction: Previous evidence has suggested a relationship between male self-reported body size and the risk of developing prostate cancer. In this UK-wide case-control study, we have explored the possible association of prostate cancer risk with male self-reported body size. We also investigated body shape as a surrogate marker for fat deposition around the body. As obesity and excessive adiposity have been linked with increased risk for developing a number of different cancers, further investigation of self-reported body size and shape and their potential relationship with prostate cancer was considered to be appropriate.

Objective: The study objective was to investigate whether underlying associations exist between prostate cancer risk and male self-reported body size and shape.

Methods: Data were collected from a large case-control study of men (1928 cases and 2043 controls) using self-administered questionnaires. Data from self-reported pictograms of perceived body size relating to three decades of life (20's, 30's and 40's) were recorded and analysed, including the pattern of change. The associations of self-identified body shape with prostate cancer risk were also explored.

Results: Self-reported body size for men in their 20's, 30's and 40's did not appear to be associated with prostate cancer risk. More than half of the subjects reported an increase in self-reported body size throughout these three decades of life. Furthermore, no association was observed between self-reported body size changes and prostate cancer risk. Using 'symmetrical' body shape as a reference group, subjects with an 'apple' shape showed a significant 27% reduction in risk (Odds ratio = 0.73, 95% C.I. 0.57-0.92).

Conclusions: Change in self-reported body size throughout early to mid-adulthood in males is not a significant risk factor for the development of prostate cancer. Body shape indicative of body fat distribution suggested that an 'apple' body shape was protective and inversely associated with prostate cancer risk when compared with 'symmetrical' shape. Further studies which investigate prostate cancer risk and possible relationships with genetic factors known to influence body shape may shed further light on any underlying associations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238928PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7498010PMC
October 2020

Germline Sequencing DNA Repair Genes in 5545 Men With Aggressive and Nonaggressive Prostate Cancer.

J Natl Cancer Inst 2021 May;113(5):616-625

Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Background: There is an urgent need to identify factors specifically associated with aggressive prostate cancer (PCa) risk. We investigated whether rare pathogenic, likely pathogenic, or deleterious (P/LP/D) germline variants in DNA repair genes are associated with aggressive PCa risk in a case-case study of aggressive vs nonaggressive disease.

Methods: Participants were 5545 European-ancestry men, including 2775 nonaggressive and 2770 aggressive PCa cases, which included 467 metastatic cases (16.9%). Samples were assembled from 12 international studies and germline sequenced together. Rare (minor allele frequency < 0.01) P/LP/D variants were analyzed for 155 DNA repair genes. We compared single variant, gene-based, and DNA repair pathway-based burdens by disease aggressiveness. All statistical tests are 2-sided.

Results: BRCA2 and PALB2 had the most statistically significant gene-based associations, with 2.5% of aggressive and 0.8% of nonaggressive cases carrying P/LP/D BRCA2 alleles (odds ratio [OR] = 3.19, 95% confidence interval [CI] = 1.94 to 5.25, P = 8.58 × 10-7) and 0.65% of aggressive and 0.11% of nonaggressive cases carrying P/LP/D PALB2 alleles (OR = 6.31, 95% CI = 1.83 to 21.68, P = 4.79 × 10-4). ATM had a nominal association, with 1.6% of aggressive and 0.8% of nonaggressive cases carrying P/LP/D ATM alleles (OR = 1.88, 95% CI = 1.10 to 3.22, P = .02). In aggregate, P/LP/D alleles within 24 literature-curated candidate PCa DNA repair genes were more common in aggressive than nonaggressive cases (carrier frequencies = 14.2% vs 10.6%, respectively; P = 5.56 × 10-5). However, this difference was non-statistically significant (P = .18) on excluding BRCA2, PALB2, and ATM. Among these 24 genes, P/LP/D carriers had a 1.06-year younger diagnosis age (95% CI = -1.65 to 0.48, P = 3.71 × 10-4).

Conclusions: Risk conveyed by DNA repair genes is largely driven by rare P/LP/D alleles within BRCA2, PALB2, and ATM. These findings support the importance of these genes in both screening and disease management considerations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa132DOI Listing
May 2021

Correction: Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease.

Br J Cancer 2019 Apr;120(8):867

Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.

This article was originally published under the standard License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the paper have been modified accordingly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-019-0419-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474270PMC
April 2019

Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel.

Eur Urol 2019 09 15;76(3):329-337. Epub 2019 Feb 15.

Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.

Background: Rare germline mutations in DNA repair genes are associated with prostate cancer (PCa) predisposition and prognosis.

Objective: To quantify the frequency of germline DNA repair gene mutations in UK PCa cases and controls, in order to more comprehensively evaluate the contribution of individual genes to overall PCa risk and likelihood of aggressive disease.

Design, Setting, And Participants: We sequenced 167 DNA repair and eight PCa candidate genes in a UK-based cohort of 1281 young-onset PCa cases (diagnosed at ≤60yr) and 1160 selected controls.

Outcome Measurements And Statistical Analysis: Gene-level SKAT-O and gene-set adaptive combination of p values (ADA) analyses were performed separately for cases versus controls, and aggressive (Gleason score ≥8, n=201) versus nonaggressive (Gleason score ≤7, n=1048) cases.

Results And Limitations: We identified 233 unique protein truncating variants (PTVs) with minor allele frequency <0.5% in controls in 97 genes. The total proportion of PTV carriers was higher in cases than in controls (15% vs 12%, odds ratio [OR]=1.29, 95% confidence interval [CI] 1.01-1.64, p=0.036). Gene-level analyses selected NBN (p=2.4×10) for overall risk and XPC (p=1.6×10) for aggressive disease, both at candidate-level significance (p<3.1×10 and p<3.4×10, respectively). Gene-set analysis identified a subset of 20 genes associated with increased PCa risk (OR=3.2, 95% CI 2.1-4.8, p=4.1×10) and four genes that increased risk of aggressive disease (OR=11.2, 95% CI 4.6-27.7, p=5.6×10), three of which overlap the predisposition gene set.

Conclusions: The union of the gene-level and gene-set-level analyses identified 23 unique DNA repair genes associated with PCa predisposition or risk of aggressive disease. These findings will help facilitate the development of a PCa-specific sequencing panel with both predictive and prognostic potential.

Patient Summary: This large sequencing study assessed the rate of inherited DNA repair gene mutations between prostate cancer patients and disease-free men. A panel of 23 genes was identified, which may improve risk prediction or treatment pathways in future clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2019.01.050DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695475PMC
September 2019

Author Correction: Germline variation at 8q24 and prostate cancer risk in men of European ancestry.

Nat Commun 2019 01 17;10(1):382. Epub 2019 Jan 17.

Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway.

The original version of this Article contained an error in the spelling of the author Manuela Gago-Dominguez, which was incorrectly given as Manuela G. Dominguez. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-08293-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336778PMC
January 2019

Author Correction: Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.

Nat Genet 2019 02;51(2):363

Dame Roma Mitchell Cancer Research Centre, University of Adelaide, Adelaide, South Australia, Australia.

In the version of this article initially published, the name of author Manuela Gago-Dominguez was misspelled as Manuela Gago Dominguez. The error has been corrected in the HTML and PDF version of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0330-6DOI Listing
February 2019

Homeobox B13 G84E Mutation and Prostate Cancer Risk.

Eur Urol 2019 05 8;75(5):834-845. Epub 2018 Dec 8.

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Background: The homeobox B13 (HOXB13) G84E mutation has been recommended for use in genetic counselling for prostate cancer (PCa), but the magnitude of PCa risk conferred by this mutation is uncertain.

Objective: To obtain precise risk estimates for mutation carriers and information on how these vary by family history and other factors.

Design, Setting, And Participants: Two-fold: a systematic review and meta-analysis of published risk estimates, and a kin-cohort study comprising pedigree data on 11983 PCa patients enrolled during 1993-2014 from 189 UK hospitals and who had been genotyped for HOXB13 G84E.

Outcome Measurements And Statistical Analysis: Relative and absolute PCa risks. Complex segregation analysis with ascertainment adjustment to derive age-specific risks applicable to the population, and to investigate how these vary by family history and birth cohort.

Results And Limitations: A meta-analysis of case-control studies revealed significant heterogeneity between reported relative risks (RRs; range: 0.95-33.0, p<0.001) and differences by case selection (p=0.007). Based on case-control studies unselected for PCa family history, the pooled RR estimate was 3.43 (95% confidence interval [CI] 2.78-4.23). In the kin-cohort study, PCa risk for mutation carriers varied by family history (p<0.001). There was a suggestion that RRs decrease with age, but this was not significant (p=0.068). We found higher RR estimates for men from more recent birth cohorts (p=0.004): 3.09 (95% CI 2.03-4.71) for men born in 1929 or earlier and 5.96 (95% CI 4.01-8.88) for men born in 1930 or later. The absolute PCa risk by age 85 for a male HOXB13 G84E carrier varied from 60% for those with no PCa family history to 98% for those with two relatives diagnosed at young ages, compared with an average risk of 15% for noncarriers. Limitations include the reliance on self-reported cancer family history.

Conclusions: PCa risks for HOXB13 G84E mutation carriers are heterogeneous. Counselling should not be based on average risk estimates but on age-specific absolute risk estimates tailored to individual mutation carriers' family history and birth cohort.

Patient Summary: Men who carry a hereditary mutation in the homeobox B13 (HOXB13) gene have a higher than average risk for developing prostate cancer. In our study, we examined a large number of families of men with prostate cancer recruited across UK hospitals, to assess what other factors may contribute to this risk and to assess whether we could create a precise model to help in predicting a man's prostate cancer risk. We found that the risk of developing prostate cancer in men who carry this genetic mutation is also affected by a family history of prostate cancer and their year of birth. This information can be used to assess more personalised prostate cancer risks to men who carry HOXB13 mutations and hence better counsel them on more personalised risk management options, such as tailoring prostate cancer screening frequency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2018.11.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470122PMC
May 2019

Germline variation at 8q24 and prostate cancer risk in men of European ancestry.

Nat Commun 2018 11 5;9(1):4616. Epub 2018 Nov 5.

Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway.

Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06863-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218483PMC
November 2018

Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease.

Br J Cancer 2018 07 19;119(1):96-104. Epub 2018 Jun 19.

Oncogenetics, Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.

Background: Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes.

Methods: We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis ≥60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants.

Results: Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects.

Conclusions: Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-018-0141-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035259PMC
July 2018

Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.

Nat Commun 2018 06 11;9(1):2256. Epub 2018 Jun 11.

Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, 4059, Australia.

Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-04109-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995836PMC
June 2018

Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.

Nat Genet 2018 07 11;50(7):928-936. Epub 2018 Jun 11.

Dame Roma Mitchell Cancer Research Centre, University of Adelaide, Adelaide, South Australia, Australia.

Genome-wide association studies (GWAS) and fine-mapping efforts to date have identified more than 100 prostate cancer (PrCa)-susceptibility loci. We meta-analyzed genotype data from a custom high-density array of 46,939 PrCa cases and 27,910 controls of European ancestry with previously genotyped data of 32,255 PrCa cases and 33,202 controls of European ancestry. Our analysis identified 62 novel loci associated (P < 5.0 × 10) with PrCa and one locus significantly associated with early-onset PrCa (≤55 years). Our findings include missense variants rs1800057 (odds ratio (OR) = 1.16; P = 8.2 × 10; G>C, p.Pro1054Arg) in ATM and rs2066827 (OR = 1.06; P = 2.3 × 10; T>G, p.Val109Gly) in CDKN1B. The combination of all loci captured 28.4% of the PrCa familial relative risk, and a polygenic risk score conferred an elevated PrCa risk for men in the ninetieth to ninety-ninth percentiles (relative risk = 2.69; 95% confidence interval (CI): 2.55-2.82) and first percentile (relative risk = 5.71; 95% CI: 5.04-6.48) risk stratum compared with the population average. These findings improve risk prediction, enhance fine-mapping, and provide insight into the underlying biology of PrCa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0142-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568012PMC
July 2018

Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets.

Nat Genet 2018 05 16;50(5):682-692. Epub 2018 Apr 16.

The Institute of Cancer Research, London, UK.

Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0086-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372064PMC
May 2018

Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition.

Br J Cancer 2018 01 4;118(2):266-276. Epub 2018 Jan 4.

Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, The Netherlands.

Background: Prostate-specific antigen (PSA) and PSA-velocity (PSAV) have been used to identify men at risk of prostate cancer (PrCa). The IMPACT study is evaluating PSA screening in men with a known genetic predisposition to PrCa due to BRCA1/2 mutations. This analysis evaluates the utility of PSA and PSAV for identifying PrCa and high-grade disease in this cohort.

Methods: PSAV was calculated using logistic regression to determine if PSA or PSAV predicted the result of prostate biopsy (PB) in men with elevated PSA values. Cox regression was used to determine whether PSA or PSAV predicted PSA elevation in men with low PSAs. Interaction terms were included in the models to determine whether BRCA status influenced the predictiveness of PSA or PSAV.

Results: 1634 participants had ⩾3 PSA readings of whom 174 underwent PB and 45 PrCas diagnosed. In men with PSA >3.0 ng ml, PSAV was not significantly associated with presence of cancer or high-grade disease. PSAV did not add to PSA for predicting time to an elevated PSA. When comparing BRCA1/2 carriers to non-carriers, we found a significant interaction between BRCA status and last PSA before biopsy (P=0.031) and BRCA2 status and PSAV (P=0.024). However, PSAV was not predictive of biopsy outcome in BRCA2 carriers.

Conclusions: PSA is more strongly predictive of PrCa in BRCA carriers than non-carriers. We did not find evidence that PSAV aids decision-making for BRCA carriers over absolute PSA value alone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/bjc.2017.429DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785754PMC
January 2018

Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21.

Hum Genet 2016 08 4;135(8):923-38. Epub 2016 Jun 4.

Brady Urological Institute, Johns Hopkins University, Baltimore, MD, 21287, USA.

Previous genome-wide association studies (GWAS) of prostate cancer risk focused on cases unselected for family history and have reported over 100 significant associations. The International Consortium for Prostate Cancer Genetics (ICPCG) has now performed a GWAS of 2511 (unrelated) familial prostate cancer cases and 1382 unaffected controls from 12 member sites. All samples were genotyped on the Illumina 5M+exome single nucleotide polymorphism (SNP) platform. The GWAS identified a significant evidence for association for SNPs in six regions previously associated with prostate cancer in population-based cohorts, including 3q26.2, 6q25.3, 8q24.21, 10q11.23, 11q13.3, and 17q12. Of note, SNP rs138042437 (p = 1.7e(-8)) at 8q24.21 achieved a large estimated effect size in this cohort (odds ratio = 13.3). 116 previously sampled affected relatives of 62 risk-allele carriers from the GWAS cohort were genotyped for this SNP, identifying 78 additional affected carriers in 62 pedigrees. A test for an excess number of affected carriers among relatives exhibited strong evidence for co-segregation of the variant with disease (p = 8.5e(-11)). The majority (92 %) of risk-allele carriers at rs138042437 had a consistent estimated haplotype spanning approximately 100 kb of 8q24.21 that contained the minor alleles of three rare SNPs (dosage minor allele frequencies <1.7 %), rs183373024 (PRNCR1), previously associated SNP rs188140481, and rs138042437 (CASC19). Strong evidence for co-segregation of a SNP on the haplotype further characterizes the haplotype as a prostate cancer predisposition locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-016-1690-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020907PMC
August 2016

The PROFILE Feasibility Study: Targeted Screening of Men With a Family History of Prostate Cancer.

Oncologist 2016 06 5;21(6):716-22. Epub 2016 May 5.

Oncogenetics Team, The Institute of Cancer Research, London, United Kingdom Academic Urology Unit, The Royal Marsden National Health Service Foundation Trust, London, United Kingdom

Background: A better assessment of individualized prostate cancer (PrCa) risk is needed to improve screening. The use of the prostate-specific antigen (PSA) level for screening in the general population has limitations and is not currently advocated. Approximately 100 common single nucleotide polymorphisms (SNPs) have been identified that are associated with the risk of developing PrCa. The PROFILE pilot study explored the feasibility of using SNP profiling in men with a family history (FH) of PrCa to investigate the probability of detecting PrCa at prostate biopsy (PB). The primary aim of this pilot study was to determine the safety and feasibility of PrCa screening using transrectal ultrasound-guided PB with or without diffusion-weighted magnetic resonance imaging (DW-MRI) in men with a FH. A secondary aim was to evaluate the potential use of SNP profiling as a screening tool in this population.

Patients And Methods: A total of 100 men aged 40-69 years with a FH of PrCa underwent PB, regardless of their baseline PSA level. Polygenic risk scores (PRSs) were calculated for each participant using 71 common PrCa susceptibility alleles. We treated the disease outcome at PB as the outcome variable and evaluated its associations with the PRS, PSA level, and DW-MRI findings using univariate logistic regression.

Results: Of the 100 men, 25 were diagnosed with PrCa, of whom 12 (48%) had clinically significant disease. Four adverse events occurred and no deaths. The PSA level and age at study entry were associated with PrCa at PB (p = .00037 and p = .00004, respectively).

Conclusion: The results of the present pilot study have demonstrated that PB is a feasible and safe method of PrCa screening in men with a FH, with a high proportion of PrCa identified requiring radical treatment. It is feasible to collect data on PrCa-risk SNPs to evaluate their combined effect as a potential screening tool. A larger prospective study powered to detect statistical associations is in progress.

Implications For Practice: Prostate biopsy is a feasible and safe approach to prostate cancer screening in men with a family history and detects a high proportion of prostate cancer that needs radical treatment. Calculating a polygenic risk score using prostate cancer risk single nucleotide polymorphisms could be a potential future screening tool for prostate cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1634/theoncologist.2015-0336DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912360PMC
June 2016

Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array.

Br J Cancer 2016 04;114(8):945-52

Background: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identified so far by genome-wide association studies implicate RAD51B and RAD23B.

Methods: Genotype data from the iCOGS array were imputed to the 1000 genomes phase 3 reference panel for 21 780 PrCa cases and 21 727 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium. We subsequently performed single variant, gene and pathway-level analyses using 81 303 SNPs within 20 Kb of a panel of 179 DNA-repair genes.

Results: Single SNP analyses identified only the previously reported association with RAD51B. Gene-level analyses using the SKAT-C test from the SNP-set (Sequence) Kernel Association Test (SKAT) identified a significant association with PrCa for MSH5. Pathway-level analyses suggested a possible role for the translesion synthesis pathway in PrCa risk and Homologous recombination/Fanconi Anaemia pathway for PrCa aggressiveness, even though after adjustment for multiple testing these did not remain significant.

Conclusions: MSH5 is a novel candidate gene warranting additional follow-up as a prospective PrCa-risk locus. MSH5 has previously been reported as a pleiotropic susceptibility locus for lung, colorectal and serous ovarian cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/bjc.2016.50DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379914PMC
April 2016

LocusExplorer: a user-friendly tool for integrated visualization of human genetic association data and biological annotations.

Bioinformatics 2016 03 20;32(6):949-51. Epub 2015 Nov 20.

The Institute of Cancer Research, London, UK and.

Unlabelled: : In this article, we present LocusExplorer, a data visualization and exploration tool for genetic association data. LocusExplorer is written in R using the Shiny library, providing access to powerful R-based functions through a simple user interface. LocusExplorer allows users to simultaneously display genetic, statistical and biological data for humans in a single image and allows dynamic zooming and customization of the plot features. Publication quality plots may then be produced in a variety of file formats.

Availability And Implementation: LocusExplorer is open source and runs through R and a web browser. It is available at www.oncogenetics.icr.ac.uk/LocusExplorer/ or can be installed locally and the source code accessed from https://github.com/oncogenetics/LocusExplorer

Contact: [email protected]
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btv690DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939893PMC
March 2016

Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans.

Hum Mol Genet 2015 Oct 29;24(19):5589-602. Epub 2015 May 29.

Centre for Cancer Genetic Epidemiology, Department of Oncology, Strangeways Laboratory, Department of Applied Health Research, University College London, London, UK.

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddv203DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572072PMC
October 2015

Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci.

Cancer Epidemiol Biomarkers Prev 2015 Jul 2;24(7):1121-9. Epub 2015 Apr 2.

University of Tasmania, Menzies Research Institute Tasmania, Hobart, Tasmania, Australia.

Background: Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer.

Methods: We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS). We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived age-specific absolute risks of developing prostate cancer by PRS stratum and family history.

Results: The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09).

Conclusions: Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles.

Impact: We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1055-9965.EPI-14-0317DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491026PMC
July 2015

Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer.

Eur Urol 2015 Aug 6;68(2):186-93. Epub 2014 Nov 6.

Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK.

Background: Germline BRCA mutations are associated with worse prostate cancer (PCa) outcomes; however, the most appropriate management for mutation carriers has not yet been investigated.

Objective: To evaluate the response of BRCA carriers to conventional treatments for localised PCa by analysing metastasis-free survival (MFS) and cause-specific survival (CSS) following radical prostatectomy (RP) or external-beam radiation therapy (RT).

Design, Setting, And Participants: Tumour features and outcomes of 1302 patients with local/locally advanced PCa (including 67 BRCA mutation carriers) were analysed. RP was undergone by 535 patients (35 BRCA); 767 received RT (32 BRCA). Median follow-up was 64 mo.

Outcome Measurements And Statistical Analysis: Median survival and 3-, 5-, and 10-yr survival rates were estimated using the Kaplan-Meier method. Generated survival curves were compared using the log-rank test. Cox regression analyses were used to assess the prognostic value of BRCA mutations.

Results And Limitations: A total of 67 BRCA carriers and 1235 noncarriers were included. At 3, 5, and 10 yr after treatment, 97%, 94%, and 84% of noncarriers and 90%, 72%, and 50% of carriers were free from metastasis (p<0.001). The 3-, 5- and 10-yr CSS rates were significantly better in the noncarrier cohort (99%, 97%, and 85%, respectively) than in carriers (96%, 76%, and 61%, respectively; p<0.001). Multivariate analysis confirmed BRCA mutations as an independent prognostic factor for MFS (hazard ratio [HR]: 2.36; 95% confidence interval [CI], 1.38-4.03; p=0.002) and CSS (HR: 2.17; 95% CI, 1.16-4.07; p=0.016).

Conclusions: BRCA carriers had worse outcomes than noncarriers when conventionally treated for local/locally advanced PCa.

Patient Summary: Prostate cancer patients with germline BRCA mutations had worse outcomes than noncarriers when conventionally treated with surgery or radiation therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2014.10.022DOI Listing
August 2015

A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer.

Nat Genet 2014 Oct 14;46(10):1103-9. Epub 2014 Sep 14.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institute of Health, Bethesda, Maryland, USA.

Genome-wide association studies (GWAS) have identified 76 variants associated with prostate cancer risk predominantly in populations of European ancestry. To identify additional susceptibility loci for this common cancer, we conducted a meta-analysis of > 10 million SNPs in 43,303 prostate cancer cases and 43,737 controls from studies in populations of European, African, Japanese and Latino ancestry. Twenty-three new susceptibility loci were identified at association P < 5 × 10(-8); 15 variants were identified among men of European ancestry, 7 were identified in multi-ancestry analyses and 1 was associated with early-onset prostate cancer. These 23 variants, in combination with known prostate cancer risk variants, explain 33% of the familial risk for this disease in European-ancestry populations. These findings provide new regions for investigation into the pathogenesis of prostate cancer and demonstrate the usefulness of combining ancestrally diverse populations to discover risk loci for disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3094DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383163PMC
October 2014

Fine-mapping the HOXB region detects common variants tagging a rare coding allele: evidence for synthetic association in prostate cancer.

PLoS Genet 2014 Feb 13;10(2):e1004129. Epub 2014 Feb 13.

Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.

The HOXB13 gene has been implicated in prostate cancer (PrCa) susceptibility. We performed a high resolution fine-mapping analysis to comprehensively evaluate the association between common genetic variation across the HOXB genetic locus at 17q21 and PrCa risk. This involved genotyping 700 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of 3195 SNPs in 20,440 PrCa cases and 21,469 controls in The PRACTICAL consortium. We identified a cluster of highly correlated common variants situated within or closely upstream of HOXB13 that were significantly associated with PrCa risk, described by rs117576373 (OR 1.30, P = 2.62×10(-14)). Additional genotyping, conditional regression and haplotype analyses indicated that the newly identified common variants tag a rare, partially correlated coding variant in the HOXB13 gene (G84E, rs138213197), which has been identified recently as a moderate penetrance PrCa susceptibility allele. The potential for GWAS associations detected through common SNPs to be driven by rare causal variants with higher relative risks has long been proposed; however, to our knowledge this is the first experimental evidence for this phenomenon of synthetic association contributing to cancer susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1004129DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923678PMC
February 2014

Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer.

J Clin Oncol 2013 May 8;31(14):1748-57. Epub 2013 Apr 8.

Spanish National Cancer Research Centre 3, Melchor Fernández Almagro, Madrid, Spain.

Purpose: To analyze the baseline clinicopathologic characteristics of prostate tumors with germline BRCA1 and BRCA2 (BRCA1/2) mutations and the prognostic value of those mutations on prostate cancer (PCa) outcomes.

Patients And Methods: This study analyzed the tumor features and outcomes of 2,019 patients with PCa (18 BRCA1 carriers, 61 BRCA2 carriers, and 1,940 noncarriers). The Kaplan-Meier method and Cox regression analysis were used to evaluate the associations between BRCA1/2 status and other PCa prognostic factors with overall survival (OS), cause-specific OS (CSS), CSS in localized PCa (CSS_M0), metastasis-free survival (MFS), and CSS from metastasis (CSS_M1).

Results: PCa with germline BRCA1/2 mutations were more frequently associated with Gleason ≥ 8 (P = .00003), T3/T4 stage (P = .003), nodal involvement (P = .00005), and metastases at diagnosis (P = .005) than PCa in noncarriers. CSS was significantly longer in noncarriers than in carriers (15.7 v 8.6 years, multivariable analyses [MVA] P = .015; hazard ratio [HR] = 1.8). For localized PCa, 5-year CSS and MFS were significantly higher in noncarriers (96% v 82%; MVA P = .01; HR = 2.6%; and 93% v 77%; MVA P = .009; HR = 2.7, respectively). Subgroup analyses confirmed the poor outcomes in BRCA2 patients, whereas the role of BRCA1 was not well defined due to the limited size and follow-up in this subgroup.

Conclusion: Our results confirm that BRCA1/2 mutations confer a more aggressive PCa phenotype with a higher probability of nodal involvement and distant metastasis. BRCA mutations are associated with poor survival outcomes and this should be considered for tailoring clinical management of these patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2012.43.1882DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641696PMC
May 2013

Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression.

Hum Mol Genet 2013 Jun 27;22(12):2520-8. Epub 2013 Mar 27.

The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK.

Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddt086DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658165PMC
June 2013

Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array.

Nat Genet 2013 Apr;45(4):385-91, 391e1-2

The Institute of Cancer Research, Sutton, UK.

Prostate cancer is the most frequently diagnosed cancer in males in developed countries. To identify common prostate cancer susceptibility alleles, we genotyped 211,155 SNPs on a custom Illumina array (iCOGS) in blood DNA from 25,074 prostate cancer cases and 24,272 controls from the international PRACTICAL Consortium. Twenty-three new prostate cancer susceptibility loci were identified at genome-wide significance (P < 5 × 10(-8)). More than 70 prostate cancer susceptibility loci, explaining ∼30% of the familial risk for this disease, have now been identified. On the basis of combined risks conferred by the new and previously known risk loci, the top 1% of the risk distribution has a 4.7-fold higher risk than the average of the population being profiled. These results will facilitate population risk stratification for clinical studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2560DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832790PMC
April 2013
-->