Publications by authors named "Theresa M Thole"

4 Publications

  • Page 1 of 1

Clinical Presentation and Management of a Dinutuximab Beta Extravasation in a Patient with Neuroblastoma.

Children (Basel) 2021 Jan 29;8(2). Epub 2021 Jan 29.

Department of Pediatric Hematology and Oncology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.

Extravasation can present serious accidental complication of intravenous drug application. While monoclonal antibodies do not show the necrotic potential of cytotoxic chemotherapy drugs, considerable inflammatory toxicity can occur, necessitating standardized operating procedures for the management of their extravasation. Here, we report the clinical course and management of dinutuximab beta extravasation in a 3-year-old child. Dinutuximab beta is a chimeric monoclonal antibody targeting the GD2 disialoganglioside on the surface of neuroblastoma cells that has in recent years gained significant importance in the treatment of high-risk neuroblastoma, now contributing to both first- and second-line therapy protocols. The dinutuximab beta extravasation reported here occurred when the patient received the antibody cycle as a continuous infusion over a 10-day period after haploidentical stem cell transplantation for relapsed high-risk neuroblastoma. The extravasated dinutuximab beta caused local pain, swelling, and hyperemia accompanied by fever and an overall deterioration in the general condition. Laboratory diagnostics demonstrated an increase in C-reactive protein level and total white blood cell count. Clinical complication management consisted of intravenous fluid therapy, local dabbing with dimethyl sulfoxide (DMSO), analgesia with dipyrone, as well as application of intravenous antibiotics to prevent bacterial superinfection in the severely immunocompromised host. The patient considerably improved after six days with this treatment regimen and fully recovered by day 20.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/children8020091DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911257PMC
January 2021

Reflection of neuroblastoma intratumor heterogeneity in the new OHC-NB1 disease model.

Int J Cancer 2020 02 1;146(4):1031-1041. Epub 2019 Aug 1.

Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32572DOI Listing
February 2020

Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival.

Cell Death Dis 2017 03 2;8(3):e2635. Epub 2017 Mar 2.

Department of Pediatric Hematology, Oncology and SCT, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin 13353, Germany.

The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/cddis.2017.49DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386552PMC
March 2017

GRHL1 acts as tumor suppressor in neuroblastoma and is negatively regulated by MYCN and HDAC3.

Cancer Res 2014 May 13;74(9):2604-16. Epub 2014 Jan 13.

Authors' Affiliations: Clinical Cooperation Unit Pediatric Oncology; Departments of Biostatistics and Tumor Genetics; Clinical Cooperation Unit Neuropathology; Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ); Departments of Neuropathology and Pediatric Hematology and Oncology, University of Heidelberg, Heidelberg; Transcriptome Analysis Laboratory, University of Goettingen, Goettingen; St. Lukas Klinik Solingen, Solingen; Department of Pediatric Hematology and Oncology; and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.

Neuroblastoma is an embryonic solid tumor of neural crest origin and accounts for 11% of all cancer-related deaths in children. Novel therapeutic strategies are therefore urgently required. MYCN oncogene amplification, which occurs in 20% of neuroblastomas, is a hallmark of high risk. Here, we aimed to exploit molecular mechanisms that can be pharmacologically addressed with epigenetically modifying drugs, such as histone deacetylase (HDAC) inhibitors. Grainyhead-like 1 (GRHL1), a gene critical for Drosophila neural development, belonged to the genes most strongly responding to HDAC inhibitor treatment of neuroblastoma cells in a genome-wide screen. An increase in the histone H4 pan-acetylation associated with its promoter preceded transcriptional activation. Physically adjacent, HDAC3 and MYCN colocalized to the GRHL1 promoter and repressed its transcription. High-level GRHL1 expression in primary neuroblastomas correlated on transcriptional and translational levels with favorable patient survival and established clinical and molecular markers for favorable tumor biology, including lack of MYCN amplification. Enforced GRHL1 expression in MYCN-amplified neuroblastoma cells with low endogenous GRHL1 levels abrogated anchorage-independent colony formation, inhibited proliferation, and retarded xenograft growth in mice. GRHL1 knockdown in MYCN single-copy cells with high endogenous GRHL1 levels promoted colony formation. GRHL1 regulated 170 genes genome-wide, and most were involved in pathways regulated during neuroblastomagenesis, including nervous system development, proliferation, cell-cell adhesion, cell spreading, and cellular differentiation. In summary, the data presented here indicate a significant role of HDAC3 in the MYCN-mediated repression of GRHL1 and suggest drugs that block HDAC3 activity and suppress MYCN expression as promising candidates for novel treatment strategies of high-risk neuroblastoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-13-1904DOI Listing
May 2014