Publications by authors named "Srikanth Aakula"

2 Publications

  • Page 1 of 1

Peroxisome proliferator-activated receptor-gamma regulates the expression and function of very-low-density lipoprotein receptor.

Am J Physiol Endocrinol Metab 2010 Jan 27;298(1):E68-79. Epub 2009 Oct 27.

Department of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.

Very-low-density lipoprotein receptor (VLDLR) is a member of the low-density receptor family, highly expressed in adipose tissue, heart, and skeletal muscle. It binds apolipoprotein E-triglyceride-rich lipoproteins and plays a significant role in triglyceride metabolism. PPARgamma is a primary regulator of lipid metabolism in adipocytes and controls the expression of an array of genes involved in lipid trafficking in adipocytes. However, it is not known whether VLDLR is also under the control of PPARgamma. In this study, we investigated the role of PPARgamma in the regulation of VLDLR expression and function in vivo and in vitro. During the differentiation of 3T3-L1 preadipocytes, the levels of VLDLR protein and mRNA increased in parallel with the induction of PPARgamma expression and reached maximum in mature adipocytes. Treatment of differentiated adipocytes with PPARgamma agonist pioglitazone upregulated VLDLR expression in dose- and time-dependent manners. In contrast, specific inhibition of PPARgamma significantly downregulated the protein level of VLDLR. Induction of VLDLR is also demonstrated in vivo in adipose tissue of wild-type (WT) mice treated with pioglitazone. In addition, pioglitazone increased plasma triglyceride-rich lipoprotein clearance and increased epididymal fat mass in WT mice but failed to induce similar effects in vldlr(-/-) mice. These results were further corroborated by the finding that pioglitazone treatment enhanced adipogenesis and lipid deposition in preadipocytes of WT mice, while its effect in VLDLR-null preadipocytes was significantly blunted. These findings provide direct evidence that VLDLR expression is regulated by PPARgamma and contributes in lipid uptake and adipogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2010

Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling.

J Bone Miner Res 2006 Apr 5;21(4):626-36. Epub 2006 Apr 5.

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2579, USA.

Unlabelled: A novel role for IGF-I in MSC chondrogenesis was determined. IGF-I effects were evaluated in the presence or absence of TGF-beta signaling by conditionally inactivating the TGF-beta type II receptor. We found that IGF-I had potent chondroinductive actions on MSCs. IGF-I effects were independent from and additive to TGF-beta.

Introduction: Mesenchymal stem cells (MSCs) can be isolated from adult bone marrow (BM), expanded, and differentiated into several cell types, including chondrocytes. The role of IGF-I in the chondrogenic potential of MSCs is poorly understood. TGF-beta induces MSC chondrogenic differentiation, although its actions are not well defined. The aim of our study was to define the biological role of IGF-I on proliferation, chondrogenic condensation, apoptosis, and differentiation of MSCs into chondrocytes, alone or in combination with TGF-beta and in the presence or absence of TGF-beta signaling.

Materials And Methods: Mononuclear adherent stem cells were isolated from mouse BM. Chondrogenic differentiation was induced by culturing high-density MSC pellets in serum- and insulin-free defined medium up to 7 days, with or without IGF-I and/or TGF-beta. We measured thymidine incorporation and stained 2-day-old pellets with TUNEL, cleaved caspase-3, peanut-agglutinin, and N-cadherin. Seven-day-old pellets were measured in size, stained for proteoglycan synthesis, and analyzed for the expression of collagen II and Sox-9 by quantitative real time PCR. We obtained MSCs from mice in which green fluorescent protein (GFP) was under the Collagen2 promoter and determined GFP expression by confocal microscopy. We conditionally inactivated the TGF-beta type II receptor (TbetaRII) in MSCs using a cre-lox system, generating TbetaRII knockout MSCs (RIIKO-MSCs).

Results And Conclusions: IGF-I modulated MSC chondrogenesis by stimulating proliferation, regulating cell apoptosis, and inducing expression of chondrocyte markers. IGF-I chondroinductive actions were equally potent to TGF-beta1, and the two growth factors had additive effects. Using RIIKO-MSCs, we showed that IGF-I chondrogenic actions are independent from the TGF-beta signaling. We found that the extracellular signal-related kinase 1/2 mitogen-activated protein kinase (Erk1/2 MAPK) pathway mediated the TGF-beta1 mitogenic response and in part the IGF-I proliferative action. Our data, by showing the role of IGF-I and TGF-beta1 in the critical steps of MSC chondrogenesis, provide critical information to optimize the therapeutic use of MSCs in cartilage disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2006