Publications by authors named "Nurgül Şen Özdemir"

1 Publications

  • Page 1 of 1

Sterol Composition of Sponges, Cnidarians, Arthropods, Mollusks, and Echinoderms from the Deep Northwest Atlantic: A Comparison with Shallow Coastal Gulf of Mexico.

Mar Drugs 2020 Nov 27;18(12). Epub 2020 Nov 27.

Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Rd., St. John's, NL A1C 5S7, Canada.

Triterpenoid biosynthesis is generally anaerobic in bacteria and aerobic in Eukarya. The major class of triterpenoids in bacteria, the hopanoids, is different to that in Eukarya, the lanostanoids, and their 4,4,14-demethylated derivatives, sterols. In the deep sea, the prokaryotic contribution to primary productivity has been suggested to be higher because local environmental conditions prevent classic photosynthetic processes from occurring. Sterols have been used as trophic biomarkers because primary producers have different compositions, and they are incorporated in primary consumer tissues. In the present study, we inferred food supply to deep sea, sponges, cnidarians, mollusks, crustaceans, and echinoderms from euphotic zone production which is driven by phytoplankton eukaryotic autotrophy. Sterol composition was obtained by gas chromatography and mass spectrometry. Moreover, we compared the sterol composition of three phyla (i.e., Porifera, Cnidaria, and Echinodermata) collected between a deep and cold-water region and a shallow tropical area. We hypothesized that the sterol composition of shallow tropical benthic organisms would better reflect their photoautotrophic sources independently of the taxonomy. Shallow tropical sponges and cnidarians from environments showed plant and zooxanthellae sterols in their tissues, while their deep-sea counterparts showed phytoplankton and zooplankton sterols. In contrast, echinoids, a class of echinoderms, the most complex phylum along with hemichordates and chordates (deuterostomes), did not show significant differences in their sterol profile, suggesting that cholesterol synthesis is present in deuterostomes other than chordates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/md18120598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761341PMC
November 2020