Publications by authors named "Lisa L Drake"

15 Publications

  • Page 1 of 1

Evaluation of Three Commercial Handheld Ultra-Low-Volume Foggers with Aqualure® 20-20 Against Adult Aedes albopictus.

J Am Mosq Control Assoc 2016 Jun;32(2):163-6

Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080.

The Anastasia Mosquito Control District (AMCD) tests all equipment before field use to determine if machines are suitable for the needs of the district. Three handheld ultra-low-volume (ULV) foggers--the American LongRay (ULV) Fogger Model 3600B with rechargeable lithium battery (DC model), American LongRay ULV Fogger Model 3600E with 110V or 220V AC power (AC model), and Boston Fog Battery Motorized Fogger (Boston Fogger)--were compared to determine which fogger would be most suitable for use by AMCD. Mortality of caged Aedes albopictus was analyzed after 24 h to determine the success of a single application. All 3 foggers resulted in 100% mortality after 24 h using the insecticide Aqualuer 20-20 (active ingredients permethrin 20.6% and piperonyl butoxide 20.6%) 1:5 dilution with reverse osmosis water. Based on operator safety, robustness, and operational performance, the American LongRay DC model was found to be the most suitable at administering Aqualuer 20-20 against caged adult Ae. albopictus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2987/moco-32-02-163-166.1DOI Listing
June 2016

Evaluation of DeltaGard® Ground Application Against Aedes albopictus in a Residential Area in St. Augustine, Florida.

J Am Mosq Control Assoc 2016 Jun;32(2):160-2

1  Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092.

Aedes albopictus is an invasive species that poses a health threat in many residential neighborhoods throughout Florida. Aedes albopictus is a high priority for mosquito control efforts in the state. The efficacy of DeltaGard(®) (AI 2% deltamethrin) application against Ae. albopictus was evaluated in a residential area in St. Augustine, FL. DeltaGard was applied using a truck-mounted ultra-low-volume aerosol generator along 3 streets in a residential neighborhood. Caged mosquito mortality and droplet density data were recorded. Leaf clippings from houses on treated streets were bioassayed against laboratory-reared Ae. albopictus. Overall, the DeltaGard application was found to be more effective in the front yard of the houses, resulting in 78.3% mortality in caged mosquitoes, 42 % mortality in leaf bioassays, and 50.5 nl/cc in spray density. Based on the amount of vegetation and residential barriers around the houses, the application caused only 46.3% mortality in caged mosquitoes, 7.5% mortality in leaf bioassays, and 5.4 nl/cc in spray density in the back yard sites.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2987/moco-32-02-160-162.1DOI Listing
June 2016

Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti.

Nat Commun 2015 Oct 9;6:8546. Epub 2015 Oct 9.

Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA.

Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na(+) dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms9546DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608377PMC
October 2015

The Efficacy of Some Commercially Available Insect Repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae).

J Insect Sci 2015 ;15:140

Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM 88003 Molecular Biology Program, New Mexico State University, MSC 3MLS, P.O. Box 30001, Las Cruces, NM 88003 Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM 88003.

Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for "natural" DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject's hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jisesa/iev125DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667684PMC
April 2016

Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti.

Sci Rep 2015 Jan 15;5:7795. Epub 2015 Jan 15.

1] Department of Biology, New Mexico State University, Las Cruces, NM [2] Institute for Applied Biosciences, New Mexico State University, Las Cruces, NM [3] Molecular Biology Program, New Mexico State University, Las Cruces, NM.

After taking vertebrate blood, female mosquitoes quickly shed excess water and ions while retaining and concentrating the mostly proteinaceous nutrients. Aquaporins (AQPs) are an evolutionary conserved family of membrane transporter proteins that regulate the flow of water and in some cases glycerol and other small molecules across cellular membranes. In a previous study, we found six putative AQP genes in the genome of the yellow fever mosquito, Ae. aegypti, and demonstrated the involvement of three of them in the blood meal-induced diuresis. Here we characterized AQP expression in different tissues before and after a blood meal, explored the substrate specificity of AQPs expressed in the Malpighian tubules and performed RNAi-mediated knockdown and tested for changes in mosquito desiccation resistance. We found that AQPs are generally down-regulated 24 hrs after a blood meal. Ae. aegypti AQP 1 strictly transports water, AQP 2 and 5 demonstrate limited solute transport, but primarily function as water transporters. AQP 4 is an aquaglyceroporin with multiple substrates. Knockdown of AQPs expressed in the MTs increased survival of Ae. aegypti under dry conditions. We conclude that Malpighian tubules of adult female yellow fever mosquitoes utilize three distinct AQPs and one aquaglyceroporin in their osmoregulatory functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep07795DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295104PMC
January 2015

The odorant receptor co-receptor from the bed bug, Cimex lectularius L.

PLoS One 2014 20;9(11):e113692. Epub 2014 Nov 20.

Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America.

Recently, the bed bug, Cimex lectularius L. has re-emerged as a serious and growing problem in many parts of the world. Presence of resistant bed bugs and the difficulty to eliminate them has renewed interest in alternative control tactics. Similar to other haematophagous arthropods, bed bugs rely on their olfactory system to detect semiochemicals in the environment. Previous studies have morphologically characterized olfactory organs of bed bugs' antenna and have physiologically evaluated the responses of olfactory receptor neurons (ORNs) to host-derived chemicals. To date, odorant binding proteins (OBPs) and odorant receptors (ORs) associated with these olfaction processes have not been studied in bed bugs. Chemoreception in insects requires formation of heteromeric complexes of ORs and a universal OR coreceptor (Orco). Orco is the constant chain of every odorant receptor in insects and is critical for insect olfaction but does not directly bind to odorants. Orco agonists and antagonists have been suggested as high-value targets for the development of novel insect repellents. In this study, we have performed RNAseq of bed bug sensory organs and identified several odorant receptors as well as Orco. We characterized Orco expression and investigated the effect of chemicals targeting Orco on bed bug behavior and reproduction. We have identified partial cDNAs of six C. lectularius OBPs and 16 ORs. Full length bed bug Orco was cloned and sequenced. Orco is widely expressed in different parts of the bed bug including OR neurons and spermatozoa. Treatment of bed bugs with the agonist VUAA1 changed bed bug pheromone-induced aggregation behavior and inactivated spermatozoa. We have described and characterized for the first time OBPs, ORs and Orco in bed bugs. Given the importance of these molecules in chemoreception of this insect they are interesting targets for the development of novel insect behavior modifiers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113692PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239089PMC
December 2015

Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods.

J Comp Physiol B 2014 Oct 19;184(7):811-25. Epub 2014 Jun 19.

Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA,

Aquaporins (AQPs) are proteins that span plasma membranes allowing the movement of water and small solutes into or out of cells. The type, expression levels and activity of AQPs play a major role in the relative permeability of each cell to water or other solutes. Research on arthropod AQPs has expanded in the last 10 years due to the completion of several arthropod genome projects and the increased availability of genetic information accessible through other resources such as de novo transcriptome assemblies. In particular, there has been significant advancement in elucidating the roles that AQPs serve in relation to the physiology of blood-feeding arthropods of medical importance. The focus of this review is upon the significance of AQPs in relation to hematophagy in arthropods. This will be accomplished via a narrative describing AQP functions during the life history of hematophagic arthropods that includes the following critical phases: (1) Saliva production necessary to blood feeding, (2) Intake and excretion of water during blood digestion, (3) Reproduction and egg development and (4) Off-host environmental stress tolerance. The concentration on these phases will highlight known vulnerabilities in the biology of hematophagic arthropods that could be used to develop novel control strategies as well as research topics that have yet to be examined.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00360-014-0836-xDOI Listing
October 2014

Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success.

PLoS Negl Trop Dis 2014 Apr 24;8(4):e2517. Epub 2014 Apr 24.

Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America.

Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4-6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20-25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pntd.0002517DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998938PMC
April 2014

Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways.

Front Physiol 2014 20;5:103. Epub 2014 Mar 20.

Department of Biology, New Mexico State University Las Cruces, NM, USA.

Anautogenous mosquito females require a meal of vertebrate blood in order to initiate the production of yolk protein precursors by the fat body. Yolk protein precursor gene expression is tightly repressed in a state-of-arrest before blood meal-related signals activate it and expression levels rise rapidly. The best understood example of yolk protein precursor gene regulation is the vitellogenin-A gene (vg) of the yellow fever mosquito Aedes aegypti. Vg-A is regulated by (1) juvenile hormone signaling, (2) the ecdysone-signaling cascade, (3) the nutrient sensitive target-of-rapamycin signaling pathway, and (4) the insulin-like peptide (ILP) signaling pathway. A plethora of new studies have refined our understanding of the regulation of yolk protein precursor genes since the last review on this topic in 2005 (Attardo et al., 2005). This review summarizes the role of these four signaling pathways in the regulation of vg-A and focuses upon new findings regarding the interplay between them on an organismal level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2014.00103DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960487PMC
June 2014

The effect of the radio-protective agents ethanol, trimethylglycine, and beer on survival of X-ray-sterilized male Aedes aegypti.

Parasit Vectors 2013 Jul 18;6:211. Epub 2013 Jul 18.

Department of Biology, New Mexico State University, Las Cruces, NM, USA.

Background: Sterile Insect Technique (SIT) has been successfully implemented to control, and in some cases, eradicate, dipteran insect populations. SIT has great potential as a mosquito control method. Different sterilization methods have been used on mosquitoes ranging from chemosterilization to genetically modified sterile male mosquito strains; however, sterilization with ionizing radiation is the method of choice for effective sterilization of male insects for most species. The lack of gentle radiation methods has resulted in significant complications when SIT has been applied to mosquitoes. Several studies report that irradiating mosquitoes resulted in a decrease in longevity and mating success compared to unirradiated males. The present study explored new protocols for mosquito sterilization with ionizing radiation that minimized detrimental effects on the longevity of irradiated males.

Methods: We tested three compounds that have been shown to act as radioprotectors in the mouse model system - ethanol, trimethylglycine, and beer. Male Aedes aegypti were treated with one of three chosen potential radioprotectors and were subsequently irradiated with identical doses of long-wavelength X-rays. We evaluated the effect of these radioprotectors on the longevity of male mosquito after irradiation.

Results: We found that X-ray irradiation with an absorbed dose of 1.17 gy confers complete sterility. Irradiation with this dose significantly shortened the lifespan of male mosquitoes and all three radioprotectors tested significantly enhanced the lifespan of irradiated mosquito males.

Conclusion: Our results suggest that treatment with ethanol, beer, or trimethylglycine before irradiation can be used to enhance longevity in mosquitoes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-3305-6-211DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723957PMC
July 2013

RNAi-mediated gene knockdown and in vivo diuresis assay in adult female Aedes aegypti mosquitoes.

J Vis Exp 2012 Jul 14(65):e3479. Epub 2012 Jul 14.

Biology Department, New Mexico State University, USA.

This video protocol demonstrates an effective technique to knockdown a particular gene in an insect and conduct a novel bioassay to measure excretion rate. This method can be used to obtain a better understanding of the process of diuresis in insects and is especially useful in the study of diuresis in blood-feeding arthropods that are able to take up huge amounts of liquid in a single blood meal. This RNAi-mediated gene knockdown combined with an in vivo diuresis assay was developed by the Hansen lab to study the effects of RNAi-mediated knockdown of aquaporin genes on Aedes aegypti mosquito diuresis. The protocol is setup in two parts: the first demonstration illustrates how to construct a simple mosquito injection device and how to prepare and inject dsRNA into the thorax of mosquitoes for RNAi-mediated gene knockdown. The second demonstration illustrates how to determine excretion rates in mosquitoes using an in vivo bioassay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/3479DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671835PMC
July 2012

SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction.

J Insect Physiol 2012 Apr 15;58(4):513-22. Epub 2012 Jan 15.

Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.

Background: An important function of the fat body in adult female mosquitoes is the conversion of blood meal derived amino acids (AA) into massive amounts of yolk protein precursors. A highly efficient transport mechanism for AAs across the plasma membrane of the fat body trophocytes is essential in order to deliver building blocks for the rapid synthesis of large amounts of these proteins. This mechanism consists in part of AA transporter proteins from the solute carrier family. These transporters have dual function; they function as transporters and participate in the nutrient signal transduction pathway that is activated in the fat body after a blood meal. In this study we focused on the solute carrier 7 family (SLC7), a family of AA transporters present in all metazoans that includes members with strong substrate specificity for cationic AAs.

Methodology/principal Findings: We identified 11 putative SLC7 transporters in the genome sequence of Aedes aegypti. Phylogenetic analysis puts five of these in the cationic AA transporter subfamily (CAT) and six in the heterodimeric AA transporter (HAT) subfamily. All 11 A. aegypti SLC7 genes are expressed in adult females. Expression profiles are dynamic after a blood meal. We knocked down six fat body-expressed SLC7 transporters using RNAi and found that these 'knockdowns' reduced AA-induced TOR signaling. We also determined the effect these knockdowns had on the number of eggs deposited following a blood meal.

Conclusions/significance: Our analysis stresses the importance of SLC7 transporters in TOR signaling pathway and mosquito reproduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2012.01.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322257PMC
April 2012

The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal.

PLoS One 2011 27;6(7):e22573. Epub 2011 Jul 27.

The Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America.

Background: The fat body is the main organ of intermediary metabolism in insects and the principal source of hemolymph proteins. As part of our ongoing efforts to understand mosquito fat body physiology and to identify novel targets for insect control, we have conducted a transcriptome analysis of the fat body of Aedes aegypti before and in response to blood feeding.

Results: We created two fat body non-normalized EST libraries, one from mosquito fat bodies non-blood fed (NBF) and another from mosquitoes 24 hrs post-blood meal (PBM). 454 pyrosequencing of the non-normalized libraries resulted in 204,578 useable reads from the NBF sample and 323,474 useable reads from the PBM sample. Alignment of reads to the existing reference Ae. aegypti transcript libraries for analysis of differential expression between NBF and PBM samples revealed 116,912 and 115,051 matches, respectively. De novo assembly of the reads from the NBF sample resulted in 15,456 contigs, and assembly of the reads from the PBM sample resulted in 15,010 contigs. Collectively, 123 novel transcripts were identified within these contigs. Prominently expressed transcripts in the NBF fat body library were represented by transcripts encoding ribosomal proteins. Thirty-five point four percent of all reads in the PBM library were represented by transcripts that encode yolk proteins. The most highly expressed were transcripts encoding members of the cathepsin b, vitellogenin, vitellogenic carboxypeptidase, and vitelline membrane protein families.

Conclusion: The two fat body transcriptomes were considerably different from each other in terms of transcript expression in terms of abundances of transcripts and genes expressed. They reflect the physiological shift of the pre-feeding fat body from a resting state to vitellogenic gene expression after feeding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022573PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144915PMC
December 2011

AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family.

J Biol Chem 2011 Mar 24;286(12):10803-13. Epub 2011 Jan 24.

Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA.

Insect yolk protein precursor gene expression is regulated by nutritional and endocrine signals. A surge of amino acids in the hemolymph of blood-fed female mosquitoes activates a nutrient signaling system in the fat bodies, which subsequently derepresses yolk protein precursor genes and makes them responsive to activation by steroid hormones. Orphan transporters of the SLC7 family were identified as essential upstream components of the nutrient signaling system in the fat body of fruit flies and the yellow fever mosquito, Aedes aegypti. However, the transport function of these proteins was unknown. We report expression and functional characterization of AaCAT1, cloned from the fat body of A. aegypti. Expression of AaCAT1 transcript and protein undergoes dynamic changes during postembryonic development of the mosquito. Transcript expression was especially high in the third and fourth larval stages; however, the AaCAT1 protein was detected only in pupa and adult stages. Functional expression and analysis of AaCAT1 in Xenopus oocytes revealed that it acts as a sodium-independent cationic amino acid transporter, with unique selectivity to L-histidine at neutral pH (K(0.5)(L-His) = 0.34 ± 0.07 mM, pH 7.2). Acidification to pH 6.2 dramatically increases AaCAT1-specific His(+)-induced current. RNAi-mediated silencing of AaCAT1 reduces egg yield of subsequent ovipositions. Our data show that AaCAT1 has notable differences in its transport mechanism when compared with related mammalian cationic amino acid transporters. It may execute histidine-specific transport and signaling in mosquito tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M110.179739DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060531PMC
March 2011

The Aquaporin gene family of the yellow fever mosquito, Aedes aegypti.

PLoS One 2010 Dec 29;5(12):e15578. Epub 2010 Dec 29.

Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA.

Background: The mosquito, Aedes aegypti, is the principal vector of the Dengue and yellow fever viruses. During feeding, an adult female can take up more than its own body weight in vertebrate blood. After a blood meal females excrete large amounts of urine through their excretion system, the Malpighian tubules (MT). Diuresis starts within seconds after the mosquito starts feeding. Aquaporins (AQPs) are a family of membrane transporters that regulate the flow of water, glycerol and other small molecules across cellular membranes in both prokaryotic and eukaryotic cells. Our aim was to identify aquaporins that function as water channels, mediating transcellular water transport in MTs of adult female Ae. aegypti.

Methodology/principal Findings: Using a bioinformatics approach we screened genome databases and identified six putative AQPs in the genome of Ae. aegypti. Phylogenetic analysis showed that five of the six Ae. aegypti AQPs have high similarity to classical water-transporting AQPs of vertebrates. Using microarray, reverse transcription and real time PCR analysis we found that all six AQPs are expressed in distinct patterns in mosquito tissues/body parts. AaAQP1, 4, and 5 are strongly expressed in the adult female MT. RNAi-mediated knockdown of the MT-expressed mosquito AQPs resulted in significantly reduced diuresis.

Conclusions/significance: Our results support the notion that AQP1, 4, and 5 function as water transporters in the MTs of adult female Ae. aegypti mosquitoes. Our results demonstrate the importance of these AQPs for mosquito diuresis after blood ingestion and highlight their potential as targets for the development of novel vector control strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015578PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014591PMC
December 2010