Publications by authors named "Kristhiano Chagas"

8 Publications

  • Page 1 of 1

A 20-hydroxyecdysone-enriched fraction from Pfaffia glomerata (Spreng.) pedersen roots alleviates stress, anxiety, and depression in mice.

J Ethnopharmacol 2021 Mar 18;267:113599. Epub 2020 Nov 18.

Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, 38408-100, Uberlândia, MG, Brazil. Electronic address:

Ethnopharmacological Relevance: Pfaffia glomerata roots are widely used in Brazil to treat various pathological conditions, particularly psychological disorders. 20-hydroxyecdysone, a phytosteroid present in the plant, can promote greater body resistance against exogenous and endogenous stressors. The objective of this study was to evaluate the possible neuroprotective effect of a 20-hydroxyecdysone-enriched fraction (20E-EF), obtained from P. glomerata roots, in an acute murine stress model.

Material And Methods: The 20E-EF was obtained by partitioning the methanol extract from P. glomerata roots with dichloromethane. Mice were treated by gavage with three doses of 20E-EF (3, 10, and 30 mg/kg) and parameters of stress, anxiety, and depression were evaluated. Biomarkers of oxidative stress (enzymes, antioxidant profile, and oxidized molecules) were evaluated in the cortex, striatum (basal ganglia), and hippocampus of animals treated with 30 mg/kg of 20E-EF.

Results: Mass spectrometry revealed that 20E was the main compound in the dichloromethane fraction. At a dose of 30 mg/kg, 20E-EF reduced stress, anxiety, and depression, while stimulating antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase), promoting antioxidant activity (antioxidant capacity, sulfhydryl groups, and reduced glutathione), and reducing oxidative markers (lipid peroxidation). In addition, 20E increased the concentration of NO in the striatum, possibly improving memory function and antioxidant activity.

Conclusion: A 30 mg/kg dose of 20E-EF was able to reduce stress, anxiety, and depression, in addition to maintaining antioxidant defenses of the cortex and striatum. These findings open new perspectives for understanding the therapeutic properties of P. glomerata and the underlying mechanism(s).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2020.113599DOI Listing
March 2021

Irradiance-driven 20-hydroxyecdysone production and morphophysiological changes in Pfaffia glomerata plants grown in vitro.

Protoplasma 2021 Jan 25;258(1):151-167. Epub 2020 Sep 25.

Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.

Pfaffia glomerata possesses potential pharmacological and medicinal properties, mainly owing to the secondary metabolite 20-hydroxyecdysone (20E). Increasing production of biomass and 20E is important for industrial purposes. This study aimed to evaluate the influence of irradiance on plant morphology and production of 20E in P. glomerata grown in vitro. Nodal segments of accessions 22 and 43 (Ac22 and Ac43) were inoculated in culture medium containing MS salts and vitamins. Cultures were maintained at 25 ± 2 °C under a 16-h photoperiod and subjected to irradiance treatments of 65, 130, and 200 μmol m s by fluorescent lamps. After 30 days, growth parameters, pigment content, stomatal density, in vitro photosynthesis, metabolites content, and morphoanatomy were assessed. Notably, Ac22 plants exhibited 10-fold higher 20E production when cultivated at 200 μmol m s than at 65 μmol m s, evidencing the importance of light quantity for the accumulation of this metabolite. 20E production was twice as high in Ac22 as in Ac43 plants although both accessions responded positively to higher irradiance. Growth under 200 μmol m s stimulated photosynthesis and consequent biomass accumulation, but lowered carotenoids and anthocyanins. Furthermore, increasing irradiance enhanced the number of palisade and spongy parenchyma cells, enhancing the overall growth of P. glomerata. Graphical abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-020-01558-1DOI Listing
January 2021

Blue and red light affects morphogenesis and 20-hydroxyecdisone content of in vitro Pfaffia glomerata accessions.

J Photochem Photobiol B 2020 Jan 24;203:111761. Epub 2019 Dec 24.

Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:

The combination of different colors from light-emitting diodes (LEDs) may influence growth and production of secondary metabolites in plants. In the present study, the effect of light quality on morphophysiology and content of 20-hydroxyecdysone (20E), a phytoecdysteroid, was evaluated in accessions of an endangered medicinal species, Pfaffia glomerata, grown in vitro. Two accessions (Ac22 and Ac43) were cultured in vitro under three different ratios of red (R) and blue (B) LEDs: (i) 1R:1B, (ii) 1R:3B, and (iii) 3R:1B. An equal ratio of red and blue light (1R:1B) increased biomass accumulation, anthocyanin content, and 20E production (by 30-40%). Moreover, 1R:1B treatment increased the size of vascular bundles and vessel elements, as well as strengthened xylem lignification and thickening of the cell wall of shoots. The 1R:3B treatment induced the highest photosynthetic and electron transport rates and enhanced the activity of oxidative stress-related enzymes. Total Chl content, Chl/Car ratio, and NPQ varied more by accession type than by light source. Spectral quality affected primary metabolism differently in each accession. Specifically, in Ac22 plants, fructose content was higher under 1R:1B and 1R:3B treatments, whereas starch accumulation was higher under 1R:3B, and sucrose under 3R:1B. In Ac43 plants, sugars were not influenced by light spectral quality, but starch content was higher under 3R:1B conditions. In conclusion, red and blue LEDs enhance biomass and 20E production in P. glomerata grown in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2019.111761DOI Listing
January 2020

Somatic embryogenesis in the commercial papaya hybrid UENF/Caliman 01 relying on plantlet production from sexed adult hermaphrodite donor plants.

An Acad Bras Cienc 2019 Aug 19;91(3):e20180504. Epub 2019 Aug 19.

Departamento de Ciências Florestais e da Madeira, CCAE/UFES. Avenida Governador Lindemberg, 316, Centro, 29550-000 Jerônimo Monteiro, ES, Brazil.

Somatic embryogenesis from explants from hermaphrodite papaya mother plants is an alternative for the production of true-to-type plants without the need for sexing. This study aimed to analyze hormonal and osmotic inducers in different somatic embryogenesis stages in the commercial hermaphrodite hybrid papaya UENF/Caliman 01. Leaf disks from in vitro shoots originated from ex vitro hermaphrodite plants were cultured in induction medium supplemented with different concentrations of 2,4-D (6, 9, 12, 15, and 18 μM) and 4-CPA (19, 22, 25, 28, and 31 μM). After 90 days, the formation of somatic embryos was verified. The 2,4-D induced the formation of light brown calli with low frequency (20%) of somatic embryogenesis. However, 4-CPA (25 μM) induced 96% of embryogenic calli, which were transferred to maturation medium (MM) and cultured for 30 days. The MM contained ABA (0.5 μM) and AC (15 g L-1) and produced 36.6 somatic embryos callus-1, mainly on cotyledonary stage. Cotyledonary embryos were transferred to germination medium supplemented with gibberellic acid (GA3) (0.0, 1.44, 2.88, and 4.32 µM), and the conversion into plantlets was enhanced with GA3 at 2.88 µM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765201920180504DOI Listing
August 2019

Accessions of Brazilian ginseng (Pfaffia glomerata) with contrasting anthocyanin content behave differently in growth, antioxidative defense, and 20-hydroxyecdysone levels under UV-B radiation.

Protoplasma 2019 Nov 17;256(6):1557-1571. Epub 2019 Jun 17.

Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.

Ultraviolet-B (UV-B) radiation is an elicitor of secondary metabolites in plant tissue culture, but the effects on 20-hydroxyecdysone (20E) are still unclear. The 20E may show biotechnological, pharmacological, medical, and agrochemical applicability. Here, we use Pfaffia glomerata, a medically important species, to understand the impacts of UV-B radiation on their physiological performance, the expression of key genes involved in the 20E biosynthesis, and the 20E content. Two accessions (A22 and A43) of plants 20 days old grown in vitro were exposed to 0 (control), 2 (6.84 kJ m), and 4 (13.84 kJ m) h UV-B radiation for 20 consecutive days. Our data showed that UV-B reduced glucose concentration in A22 and A43 under 4 h of exposure (29 and 30%, respectively), while sucrose concentration increased (32 and 57%, respectively). UV-B also differentially impacted the accessions (A22 and A43), where the A22 under 4 h of UV-B had reduced total dry weight (8%) and electron transport rate (31%); in contrast, A43 did not change. Also, only A22 had increased POD activity under 4 h of UV-B (66%), as well as increased gene expression of the 20E pathway and the 20E content under 2 and 4 h of UV-B in leaves (28 and 21%, respectively) and roots (16 and 13%, respectively). This differential performance to UV-B can be explained by the contrasting anthocyanin contents. Notably, A43 displayed 56% more anthocyanin to the former, a possible defense against UV-B. In conclusion, UV-B radiation is a potential elicitor for increasing 20E content in P. glomerata grown in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-019-01400-3DOI Listing
November 2019

Salinity-induced modifications on growth, physiology and 20-hydroxyecdysone levels in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen].

Plant Physiol Biochem 2019 Jul 3;140:43-54. Epub 2019 May 3.

Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:

- Salinity is a major threat to agriculture. However, depending on the concentration of soluble salts in soil, increased secondary metabolite levels can occur with no major damages to plant growth and development. The phytoecdysteroid (PE) 20-hydroxyecdysone (20E) is a secondary metabolite with biotechnological, medicinal, pharmaceutical and agrochemical applicability. Here, we characterize the responses (growth and physiology) of Pfaffia glomerata under different NaCl concentrations and examine the production of 20E as affected by salinity. Forty-day-old plants grown in greenhouse were exposed to 0, 120, 240, 360 or 480 mM of NaCl for 11 days. Moderate salinity (i.e., 120 mM of NaCl) led to increased 20E concentrations in leaves (47%) relative to the control with no significant effect on photosynthesis and biomass accumulation, thus allowing improved 20E contents on a per whole-plant basis. In contrast, plants under high salinity (i.e., 240-480 mM of NaCl) displayed similar 20E concentrations in leaves compared to the control, but with marked impairments to biomass accumulation and photosynthetic performance (coupled with decreased sucrose and starch levels) in parallel to nutritional imbalance. High salinity also strongly increased salicylic acid levels, antioxidant enzyme activities, and osmoregulatory status. Regardless of stress severity, 20E production was accompanied by the upregulation of Spook and Phantom genes. Our findings suggest that P. glomerata cultivation in moderate salinity soils can be considered as a suitable agricultural option to increase 20E levels, since metabolic and structural complexity that makes its artificial synthesis very difficult.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2019.05.002DOI Listing
July 2019

The effects of an osmoregulator, carbohydrates and polyol on maturation and germination of 'Golden THB' papaya somatic embryos.

An Acad Bras Cienc 2018 Oct-Dec;90(4):3433-3447. Epub 2018 Oct 25.

Departamento de Ciências Florestais e da Madeira, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Avenida Governador Lindemberg, 316, Centro, 29550-000 Jerônimo Monteiro, ES, Brazil.

This study evaluated the effect of osmoregulators and carbohydrates on the maturation and germination of somatic embryos of papaya 'Golden THB'. Cotyledon explants from papaya seedlings germinated in vitro on basal MS medium were cultured on somatic embryogenesis induction medium (IM) containing MS salts, myo-inositol, sucrose, agar and p-chlorophenoxyacetic acid. After 50 days, embryogenic calli were transferred onto maturation media (MM) for 45 additional days. For experiment 1, a MS-based medium supplemented with abscisic acid, activated charcoal and concentrations of PEG 6000 (0; 40; 50; 60 and 70 g L-1) was used, whereas for experiment 2 malt extract concentrations (0; 0.1; 0.2; 0.3 and 0.4 g L-1) were assessed. The normal cotyledonary somatic embryos produced in experiment 2 were transferred to the germination medium (GM). The GM consisted of full-strength MS medium, sucrose, agar and was supplemented with myo-inositol at varying concentrations (0; 0.275; 0.55 and 0.825 mM). The PEG concentrations tested impaired the maturation of 'Golden THB' papaya somatic embryos. The MM, supplemented with malt extract at 0.153 g L-1, promoted the greatest development of normal somatic embryos (18.28 SE calli-1), that is, two cotyledonary leaves produced 36.56 SE calli-1. The supplementation with 0.45 mM myo-inositol provided the highest germination percentage (47.42%) and conversion to emblings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1590/0001-3765201820171035DOI Listing
February 2019

Risk of Soil Recontamination Due to Using Eleusine coracana and Panicum maximum Straw After Phytoremediation of Picloram.

Int J Phytoremediation 2015 ;17(1-6):313-21

a Tropical Agriculture Group , Federal University of Espirito Santo , Brazil.

This study aimed to evaluate the herbicidal activity of picloram on the biomass of the remediation plants Eleusine coracana and Panicum maximum after cultivation in a soil contaminated with this herbicide. These species were grown in three soils, differentiated based on texture (clayish, middle, and sandy, with 460, 250, and 40 g kg(-1) of the clay, respectively), previously contaminated with picloram (0, 80, and 160 g ha(-1)). After 90 days, the plants were harvested and an extract was produced by maceration of leaves and stems of these plants. It was applied to pots containing washed sand, comprising a bioassay in a growth chamber using soybean as a bioindicator for picloram. Soil and plant samples were analyzed by HPLC. The results showed the presence of picloram or metabolites with herbicidal activity in the shoots of E. coracana and P. maximum at phytotoxic levels with regard to soybean plants, indicating that they work only as phytoextractors and that the presence of straw on the soil surface can promote recontamination within the area. It is not recommended to cultivate species susceptible to picloram in areas where it was reported remediation by E. indica and P. maximum and still present residues of these species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2014.909775DOI Listing
October 2015
-->