Publications by authors named "Jochen Graw"

115 Publications

On the Nature of Murine Radiation-Induced Subcapsular Cataracts: Optical Coherence Tomography-Based Fine Classification, In Vivo Dynamics and Impact on Visual Acuity.

Radiat Res 2021 Feb 25. Epub 2021 Feb 25.

Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany.

Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1667/RADE-20-00163.1DOI Listing
February 2021

Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice.

Int J Radiat Biol 2021 1;97(4):529-540. Epub 2021 Mar 1.

Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany.

Purpose: The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail.

Material And Methods: We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen.

Results: This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect.

Conclusions: This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2021.1876951DOI Listing
March 2021

Ionising radiation causes vision impairment in neonatal B6C3F1 mice.

Exp Eye Res 2021 Mar 14;204:108432. Epub 2021 Jan 14.

Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany. Electronic address:

Ionising radiation interacts with lenses and retinae differently. In human lenses, posterior subcapsular cataracts are the predominant observation, whereas retinae of adults are comparably resistant to even relatively high doses. In this study, we demonstrate the effects of 2 Gy of low linear energy transfer ionising radiation on eyes of B6C3F1 mice aged postnatal day 2. Optical coherence tomography and Scheimpflug imaging were utilised for the first time to monitor murine lenses and retinae in vivo. The visual acuity of the mice was determined and histological analysis was conducted. Our results demonstrated that visual acuity was reduced by as much as 50 % approximately 9 months after irradiation in irradiated mice. Vision impairment was caused by retinal atrophy and inner cortical cataracts. These results help to further our understanding of the risk of ionising radiation for human foeti (∼ 8 mo), which follow the same eye development stages as neonatal mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2020.108432DOI Listing
March 2021

Imbalances in the eye lens proteome are linked to cataract formation.

Nat Struct Mol Biol 2021 02 11;28(2):143-151. Epub 2021 Jan 11.

Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Garching, Germany.

The prevalent model for cataract formation in the eye lens posits that damaged crystallin proteins form light-scattering aggregates. The α-crystallins are thought to counteract this process as chaperones by sequestering misfolded crystallin proteins. In this scenario, chaperone pool depletion would result in lens opacification. Here we analyze lenses from different mouse strains that develop early-onset cataract due to point mutations in α-, β-, or γ-crystallin proteins. We find that these mutant crystallins are unstable in vitro; in the lens, their levels are substantially reduced, and they do not accumulate in the water-insoluble fraction. Instead, all the other crystallin proteins, including the α-crystallins, are found to precipitate. The changes in protein composition and spatial organization of the crystallins observed in the mutant lenses suggest that the imbalance in the lenticular proteome and altered crystallin interactions are the bases for cataract formation, rather than the aggregation propensity of the mutant crystallins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-020-00543-9DOI Listing
February 2021

Application of WES Towards Molecular Investigation of Congenital Cataracts: Identification of Novel Alleles and Genes in a Hospital-Based Cohort of South India.

Int J Mol Sci 2020 Dec 16;21(24). Epub 2020 Dec 16.

Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Tamil Nadu 600 113, India.

Congenital cataracts are the prime cause for irreversible blindness in children. The global incidence of congenital cataract is 2.2-13.6 per 10,000 births, with the highest prevalence in Asia. Nearly half of the congenital cataracts are of familial nature, with a predominant autosomal dominant pattern of inheritance. Over 38 of the 45 mapped loci for isolated congenital or infantile cataracts have been associated with a mutation in a specific gene. The clinical and genetic heterogeneity of congenital cataracts makes the molecular diagnosis a bit of a complicated task. Hence, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 11 pedigrees affected with familial congenital cataracts. Analysis of the WES data for known cataract genes identified causative mutations in six pedigrees (55%) in (two variants), and an additional likely causative mutation in a novel gene , which represents the first dominant mutation in this gene. This study identifies a novel cataract gene not yet linked to human disease. NCOA6 is a transcriptional coactivator that interacts with nuclear hormone receptors to enhance their transcriptional activator function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21249569DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765966PMC
December 2020

Dose-dependent long-term effects of a single radiation event on behaviour and glial cells.

Int J Radiat Biol 2021 15;97(2):156-169. Epub 2020 Dec 15.

Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.

Purpose: The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations.

Materials And Methods: We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with DNA repair gene point mutation) on behaviour.

Results: The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features.

Conclusion: This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2021.1857455DOI Listing
December 2020

A novel E128* mutation underlying an autosomal dominant nuclear cataract in a south Indian kindred.

Ophthalmic Genet 2020 12 18;41(6):556-562. Epub 2020 Aug 18.

Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras , Chennai, India.

Purpose: To identify the mutation causing an autosomal dominant congenital nuclear cataract in a south Indian family by whole exome sequencing and to characterize further phenotypically the same in a zebra fish model.

Methods: A six-generation family (DKEC1) with several affected members registered at the Regional Institute of Ophthalmology (RIO), Chennai was documented to have congenital nuclear cataract. Detailed clinical history and blood samples were collected from all available family members. Genomic DNA of the proband was subjected to whole exome sequencing. Sequence variations suggestive of putative mutations were further confirmed by bidirectional sequencing and restriction site analysis. Functional analysis of the mutant E128* in zebrafish embryos was done to dissect out the pathogenicity.

Results: A unique variation viz., c.382 G > T in the coding region of the gene, resulting in a premature stop codon at position 128 (E128*) was documented in the affected family members. The same was absent in unaffected family members and in 120 unrelated population controls checked. Bioinformatic tools predicted that the mutation might cause a deleterious effect on protein structure and function. Molecular function analysis of this novel mutation (p. E128*, ) in the zebrafish indicated this mutation to impair lens transparency.

Conclusion: This study identified a novel mutation, E128* to cause autosomal dominant congenital nuclear cataract in a large south Indian family. Our study provides a new insight onto how the mutation might affect the γC-crystallin structure and function besides emphasizing the need for genetic diagnosis toward vision restoration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/13816810.2020.1807027DOI Listing
December 2020

Polymorphisms in CRYBB2 encoding βB2-crystallin are associated with antisaccade performance and memory function.

Transl Psychiatry 2020 04 21;10(1):113. Epub 2020 Apr 21.

Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany.

βB2-crystallin (gene symbol: Crybb2/CRYBB2) was first described as a structural protein of the ocular lens before it was detected in various brain regions of the mouse, including the hippocampus and the cerebral cortex. Mutations in the mouse Crybb2 gene lead to alterations of sensorimotor gating measured as prepulse inhibition (PPI) and reduced hippocampal size, combined with an altered number of parvalbumin-positive GABAergic interneurons. Decreased PPI and alterations of parvalbumin-positive interneurons are also endophenotypes that typically occur in schizophrenia. To verify the results found in mice, we genotyped 27 single nucleotide polymorphisms (SNPs) within the CRYBB2 gene and its flanking regions and investigated different schizophrenia typical endophenotypes in a sample of 510 schizophrenia patients and 1322 healthy controls. In the case-control study, no association with schizophrenia was found. However, 3 of the 4 investigated haplotype blocks indicated a decreased CRYBB2 mRNA expression. Two of these blocks were associated with poorer antisaccade task performance and altered working memory-linked functional magnetic resonance imaging signals. For the two haplotypes associated with antisaccade performance, suggestive evidence was found with visual memory and in addition, haplotype block 4 showed a nominally significant association with reduced sensorimotor gating, measured as P50 ratio. These results were not schizophrenia-specific, but could be detected in a combined sample of patients and healthy controls. This is the first study to demonstrate the importance of βB2-crystallin for antisaccade performance and memory function in humans and therefore provides implications for βB2-crystallin function in the human brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-0791-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174396PMC
April 2020

Mutation in Bmpr1b Leads to Optic Disc Coloboma and Ventral Retinal Gliosis in Mice.

Invest Ophthalmol Vis Sci 2020 02;61(2):44

,.

Purpose: The clinical phenotype of retinal gliosis occurs in different forms; here, we characterize one novel genetic feature, (i.e., signaling via BMP-receptor 1b).

Methods: Mouse mutants were generated within a recessive ENU mutagenesis screen; the underlying mutation was identified by linkage analysis and Sanger sequencing. The eye phenotype was characterized by fundoscopy, optical coherence tomography, optokinetic drum, electroretinography, and visual evoked potentials, by histology, immunohistology, and electron-microscopy.

Results: The mutation affects intron 10 of the Bmpr1b gene, which is causative for skipping of exon 10. The expression levels of pSMAD1/5/8 were reduced in the mutant retina. The loss of BMPR1B-mediated signaling leads to optic nerve coloboma, gliosis in the optic nerve head and ventral retina, defective optic nerve axons, and irregular retinal vessels. The ventral retinal gliosis is proliferative and hypertrophic, which is concomitant with neuronal delamination and the reduction of retinal ganglion cells (RGCs); it is dominated by activated astrocytes overexpressing PAX2 and SOX2 but not PAX6, indicating that they may retain properties of gliogenic precursor cells. The expression pattern of PAX2 in the optic nerve head and ventral retina is altered during embryonic development. These events finally result in reduced electrical transmission of the retina and optic nerve and significantly reduced visual acuity.

Conclusions: Our study demonstrates that BMPR1B is necessary for the development of the optic nerve and ventral retina. This study could also indicate a new mechanism in the formation of retinal gliosis; it opens new routes for its treatment eventually preventing scar formation in the retina.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.61.2.44DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329948PMC
February 2020

A comprehensive and comparative phenotypic analysis of the collaborative founder strains identifies new and known phenotypes.

Mamm Genome 2020 02 14;31(1-2):30-48. Epub 2020 Feb 14.

German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-020-09827-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060152PMC
February 2020

Spectral domain - Optical coherence tomography (SD-OCT) as a monitoring tool for alterations in mouse lenses.

Exp Eye Res 2020 01 18;190:107871. Epub 2019 Nov 18.

Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany. Electronic address:

The eye lens displays a variety of phenotypes in the wake of genetic modifications or environmental influences. Therefore, a high-resolution in vivo imaging method for the lens is desirable. Optical coherence tomography (OCT) has become a powerful imaging tool in ophthalmology, especially for retinal imaging in small animal models such as mice. Here, we demonstrate an optimized approach specifically for anterior eye segment imaging with spectral domain OCT (SD-OCT) on several known murine lens cataract mutants. Scheimpflug and histological section images on the same eye were used in parallel to assess the observed pathologies. With SD-OCT images, we obtained detailed information about the different alterations from the anterior to the posterior pole of the lens. This capability makes OCT a valuable high-resolution imaging modality for the anterior eye segment in mouse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2019.107871DOI Listing
January 2020

CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure.

J Proteome Res 2020 01 8;19(1):337-345. Epub 2019 Nov 8.

Institute of Radiation Biology, Helmholtz Zentrum München GmbH , German Research Center for Environmental Health GmbH (HMGU) , 85764 Neuherberg , Germany.

The impact of low-dose ionizing radiation (IR) on the human brain has recently attracted attention due to the increased use of IR for diagnostic purposes. The aim of this study was to investigate low-dose radiation response in the hippocampus. Female B6C3F1 mice were exposed to total body irradiation with 0 (control), 0.063, 0.125, or 0.5 Gy. Quantitative label-free proteomic analysis of the hippocampus was performed after 24 months. CREB signaling and CREB-associated pathways were affected at all doses. The lower doses (0.063 and 0.125 Gy) induced the CREB pathway, whereas the exposure to 0.5 Gy deactivated CREB. Similarly, the lowest dose (0.063 Gy) was anti-inflammatory, reducing the number of activated microglia. In contrast, induction of activated microglia and reactive astroglia was found at 0.5 Gy, suggesting increased inflammation and astrogliosis, respectively. The apoptotic markers BAX and cleaved CASP-3 and oxidative stress markers were increased only at the highest dose. Since the activated CREB pathway plays a central role in learning and memory, these data suggest neuroprotection at the lowest dose (0.063 Gy) but neurodegeneration at 0.5 Gy. The response to 0.5 Gy resembles alterations found in healthy aging and thus may represent radiation-induced accelerated aging of the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.9b00552DOI Listing
January 2020

Mutation in the mouse histone gene Hist2h3c1 leads to degeneration of the lens vesicle and severe microphthalmia.

Exp Eye Res 2019 11 13;188:107632. Epub 2019 Apr 13.

Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany. Electronic address:

During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A-> C mutation (Ile120Leu) in the Hist2h3c1 gene and a 71 T-> C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2019.03.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876282PMC
November 2019

Mouse models for microphthalmia, anophthalmia and cataracts.

Authors:
Jochen Graw

Hum Genet 2019 Sep 27;138(8-9):1007-1018. Epub 2019 Mar 27.

Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.

Mouse mutants are a long-lasting, valuable tool to identify genes underlying eye diseases, because the absence of eyes, very small eyes and severely affected, cataractous eyes are easily to detect without major technical equipment. In mice, actually 145 genes or loci are known for anophthalmia, 269 for microphthalmia, and 180 for cataracts. Approximately, 25% of the loci are not yet characterized; however, some of the ancient lines are extinct and not available for future research. The phenotypes of the mutants represent a continuous spectrum either in anophthalmia and microphthalmia, or in microphthalmia and cataracts. On the other side, mouse models are still missing for some genes, which have been identified in human families to be causative for anophthalmia, microphthalmia, or cataracts. Finally, the mouse offers the possibility to genetically test the roles of modifiers and the role of SNPs; these aspects open new avenues for ophthalmogenetics in the mouse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-019-01995-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710221PMC
September 2019

A mouse model for intellectual disability caused by mutations in the X-linked 2'‑O‑methyltransferase Ftsj1 gene.

Biochim Biophys Acta Mol Basis Dis 2019 09 14;1865(9):2083-2093. Epub 2018 Dec 14.

Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Strasse 8, 17489 Greifswald, Germany.

Mutations in the X chromosomal tRNA 2'‑O‑methyltransferase FTSJ1 cause intellectual disability (ID). Although the gene is ubiquitously expressed affected individuals present no consistent clinical features beyond ID. In order to study the pathological mechanism involved in the aetiology of FTSJ1 deficiency-related cognitive impairment, we generated and characterized an Ftsj1 deficient mouse line based on the gene trapped stem cell line RRD143. Apart from an impaired learning capacity these mice presented with several statistically significantly altered features related to behaviour, pain sensing, bone and energy metabolism, the immune and the hormone system as well as gene expression. These findings show that Ftsj1 deficiency in mammals is not phenotypically restricted to the brain but affects various organ systems. Re-examination of ID patients with FTSJ1 mutations from two previously reported families showed that several features observed in the mouse model were recapitulated in some of the patients. Though the clinical spectrum related to Ftsj1 deficiency in mouse and man is variable, we suggest that an increased pain threshold may be more common in patients with FTSJ1 deficiency. Our findings demonstrate novel roles for Ftsj1 in maintaining proper cellular and tissue functions in a mammalian organism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2018.12.011DOI Listing
September 2019

Crybb2 Mutations Consistently Affect Schizophrenia Endophenotypes in Mice.

Mol Neurobiol 2019 Jun 6;56(6):4215-4230. Epub 2018 Oct 6.

Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany.

As part of the βγ-superfamily, βB2-crystallin (CRYBB2) is an ocular structural protein in the lens, and mutation of the corresponding gene can cause cataracts. CRYBB2 also is expressed in non-lens tissue such as the adult mouse brain and is associated with neuropsychiatric disorders such as schizophrenia. Nevertheless, the robustness of this association as well as how CRYBB2 may contribute to disease-relevant phenotypes is unknown. To add further clarity to this issue, we performed a comprehensive analysis of behavioral and neurohistological alterations in mice with an allelic series of mutations in the C-terminal end of the Crybb2 gene. Behavioral phenotyping of these three βB2-mutant lines Crybb2, Crybb2, and Crybb2 included assessment of exploratory activity and anxiety-related behavior in the open field, sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle reflex, cognitive performance measured by social discrimination, and spontaneous alternation in the Y-maze. In each mutant line, we also quantified the number of parvalbumin-positive (PV+) GABAergic interneurons in selected brain regions that express CRYBB2. While there were allele-specific differences in individual behaviors and affected brain areas, all three mutant lines exhibited consistent alterations in PPI that paralleled alterations in the PV+ cell number in the thalamic reticular nucleus (TRN). The direction of the PPI change mirrored that of the TRN PV+ cell number thereby suggesting a role for TRN PV+ cell number in modulating PPI. Moreover, as both altered PPI and PV+ cell number are schizophrenia-associated endophenotypes, our result implicates mutated Crybb2 in the development of this neuropsychiatric disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-1365-5DOI Listing
June 2019

Crybb2 associates with Tmsb4X and is crucial for dendrite morphogenesis.

Biochem Biophys Res Commun 2018 09 6;503(1):123-130. Epub 2018 Jun 6.

Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.

Dendrite morphogenesis is a complex but well-orchestrated process. Various studies reported the involvement of alteration in dendrite morphology in different brain disorders, including neuropsychiatric disorders. Initially, βB2-crystallin (gene symbol: Crybb2/CRYBB2) has been described as a structural protein of the ocular lens. Mutations of the corresponding gene, Crybb2, lead to cataract. Recent studies in mice suggested that mutations in Crybb2 cause alterations in hippocampal morphology and function, albeit its function in hippocampal neuron development remained elusive. In the current study, we found that Crybb2 contributes to dendritogenesis in vitro and in vivo. Furthermore, screening of previous data on differential expression-arrays, we found Tmsb4X up-regulated in Crybb2 mutants mouse brain. Additionally, Tmsb4X was co-expressed with Crybb2 at actin-enriched cell ruffles. Over-expression of Tmsb4X in cultured hippocampal neurons inhibited dendritogenesis, which phenocopied Crybb2 knock-down. The current study uncovers a new function of Crybb2 in brain development, especially in dendritogenesis, and the possible interplay partner Tmsb4X involved in this process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.05.195DOI Listing
September 2018

Peroxidasin contributes to lung host defense by direct binding and killing of gram-negative bacteria.

PLoS Pathog 2018 05 18;14(5):e1007026. Epub 2018 May 18.

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America.

Innate immune recognition is classically mediated by the interaction of host pattern-recognition receptors and pathogen-associated molecular patterns; this triggers a series of downstream signaling events that facilitate killing and elimination of invading pathogens. In this report, we provide the first evidence that peroxidasin (PXDN; also known as vascular peroxidase-1) directly binds to gram-negative bacteria and mediates bactericidal activity, thus, contributing to lung host defense. PXDN contains five leucine-rich repeats and four immunoglobulin domains, which allows for its interaction with lipopolysaccharide, a membrane component of gram-negative bacteria. Bactericidal activity of PXDN is mediated via its capacity to generate hypohalous acids. Deficiency of PXDN results in a failure to eradicate Pseudomonas aeruginosa and increased mortality in a murine model of Pseudomonas lung infection. These observations indicate that PXDN mediates previously unrecognized host defense functions against gram-negative bacterial pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1007026DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979044PMC
May 2018

Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data.

PLoS Biol 2018 04 16;16(4):e2005019. Epub 2018 Apr 16.

German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a "barren" regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.2005019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922977PMC
April 2018

Lifetime study in mice after acute low-dose ionizing radiation: a multifactorial study with special focus on cataract risk.

Radiat Environ Biophys 2018 05 11;57(2):99-113. Epub 2018 Jan 11.

Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, 85764, Neuherberg, Germany.

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00411-017-0728-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5902533PMC
May 2018

Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice.

Nat Commun 2017 07 24;8(1):155. Epub 2017 Jul 24.

DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.

Dietary restriction regimes extend lifespan in various animal models. Here we show that longevity in male C57BL/6J mice subjected to every-other-day feeding is associated with a delayed onset of neoplastic disease that naturally limits lifespan in these animals. We compare more than 200 phenotypes in over 20 tissues in aged animals fed with a lifelong every-other-day feeding or ad libitum access to food diet to determine whether molecular, cellular, physiological and histopathological aging features develop more slowly in every-other-day feeding mice than in controls. We also analyze the effects of every-other-day feeding on young mice on shorter-term every-other-day feeding or ad libitum to account for possible aging-independent restriction effects. Our large-scale analysis reveals overall only limited evidence for a retardation of the aging rate in every-other-day feeding mice. The data indicate that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice.Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-00178-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537224PMC
July 2017

Fgf9 Mutation Alters Information Processing and Social Memory in Mice.

Mol Neurobiol 2018 Jun 10;55(6):4580-4595. Epub 2017 Jul 10.

Institutes of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.

In neuropsychiatric diseases, such as major depression and anxiety, pathogenic vulnerability is partially dictated by a genetic predisposition. The search continues to define this genetic susceptibility and establish new genetic elements as potential therapeutic targets. The fibroblast growth factors (FGFs) could be interesting in this regard. This family of signaling molecules plays important roles in development while also functioning within the adult. This includes effects on aspects of brain function such as neurogenesis and synapse formation. Of this family, Fgf9 is expressed in the adult brain, but its functional role is less well defined. In this study, we examined the role of Fgf9 in different brain functions by analyzing the behavior of Fgf9 mutant mice, an Fgf9 allele without the confounding systemic effects of other Fgf9 genetic models. Here, we show that this mutation caused altered locomotor and exploratory reactivity to novel, mildly stressful environments. In addition, mutants showed heightened acoustic startle reactivity as well as impaired social discrimination memory. Notably, there was a substantial decrease in the level of adult olfactory bulb neurogenesis with no difference in hippocampal neurogenesis. Collectively, our findings indicate a role for the Fgf9 mutation in information processing and perception of aversive situations as well as in social memory. Thus, genetic alterations in Fgf9 could increase vulnerability to developing neuropsychiatric disease, and we propose the Fgf9 mutant mice as a valuable tool to study the predictive etiological aspects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0659-3DOI Listing
June 2018

Common eye diseases in older adults of southern Germany: results from the KORA-Age study.

Age Ageing 2017 05;46(3):481-486

Helmholtz Zentrum München, Deutsches Forschungszentrum für Umwelt und Gesundheit, Institute of Developmental Genetics, Neuherberg, Germany.

Purpose: a population-based study in the region of Augsburg (Germany, KORA) was used to identify the prevalence of eye diseases and their risk factors in a sample of aged individuals.

Methods: data originated from the KORA-Age study collected in 2012 and 822 participants (49.6% women, 50.4% men, aged 68-96 years) were asked standardised questions about eye diseases. Positive answers were validated and specified by treating ophthalmologists. Additional information came from laboratory data. Polymorphic markers were tested for candidate genes.

Results: we received validations and specifications for 339 participants. The most frequent eye diseases were cataracts (299 cases, 36%), dry eyes (120 cases, 15%), glaucoma (72 cases, 9%) and age-related macular degeneration (AMD) (68 cases, 8%). Almost all participants suffering from glaucoma or from AMD also had cataracts. Cataract surgery was associated with diabetes (in men; OR = 2.24; 95% confidence interval [CI] 1.11-4.53; P = 0.025) and smoking (in women; OR = 6.77; CI 1.62-28.35; P = 0.009). In men, treatments in airway diseases was associated with cataracts (glucocorticoids: OR = 5.29, CI 1.20-23.37; P = 0.028; sympathomimetics: OR = 4.57, CI 1.39-15.00; P = 0.012). Polymorphisms in two genes were associated with AMD (ARMS2: OR = 2.28, CI 1.48-3.51; P = 0.005; CFH: OR = 2.03, CI 1.35-3.06; P = 0.010).

Conclusion: combinations of eye diseases were frequent at old age. The importance of classical risk factors like diabetes, hypertension and airway diseases decreased either due to a survivor bias leaving healthier survivors in the older age group, or due to an increased influence of other up to now unknown risk factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ageing/afw234DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405752PMC
May 2017

Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research.

Mutat Res 2016 Oct - Dec;770(Pt B):238-261. Epub 2016 Jul 29.

Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan. Electronic address:

The lens of the eye has long been considered as a radiosensitive tissue, but recent research has suggested that the radiosensitivity is even greater than previously thought. The 2012 recommendation of the International Commission on Radiological Protection (ICRP) to substantially reduce the annual occupational equivalent dose limit for the ocular lens has now been adopted in the European Union and is under consideration around the rest of the world. However, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological, mechanistic evidence at doses <2Gy. This paper aims to present a review of recently published information on the biological and mechanistic aspects of cataracts induced by exposure to ionizing radiation (IR). The data were compiled by assessing the pertinent literature in several distinct areas which contribute to the understanding of IR induced cataracts, information regarding lens biology and general processes of cataractogenesis. Results from cellular and tissue level studies and animal models, and relevant human studies, were examined. The main focus was the biological effects of low linear energy transfer IR, but dosimetry issues and a number of other confounding factors were also considered. The results of this review clearly highlight a number of gaps in current knowledge. Overall, while there have been a number of recent advances in understanding, it remains unknown exactly how IR exposure contributes to opacification. A fuller understanding of how exposure to relatively low doses of IR promotes induction and/or progression of IR-induced cataracts will have important implications for prevention and treatment of this disease, as well as for the field of radiation protection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrrev.2016.07.010DOI Listing
May 2017

Features of Age-Related Macular Degeneration in the General Adults and Their Dependency on Age, Sex, and Smoking: Results from the German KORA Study.

PLoS One 2016 28;11(11):e0167181. Epub 2016 Nov 28.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Age-related macular degeneration (AMD) is a vision impairing disease of the central retina characterized by early and late forms in individuals older than 50 years of age. However, there is little knowledge to what extent also younger adults are affected. We have thus set out to estimate the prevalence of early AMD features and late AMD in a general adult population by acquiring color fundus images in 2,840 individuals aged 25 to 74 years of the Cooperative Health Research in the Region of Augsburg project (KORA) in South Germany. Among the 2,546 participants with gradable images for each eye, 10.9% (n = 277) had early AMD features (applying the 9-step Age-Related Eye Disease Study Severity Scale), 0.2% (n = 6) had late AMD. Prevalence increased with age, reaching 26.3% for early AMD features and 1.9% for late AMD at the age 70+. However, signs of early AMD were found in subjects as young as 25 years, with the risk for early AMD features increasing linearly by years of age in men, and, less consistent with a linear increase, in women. Risk for early AMD features increased linearly by pack years of smoking in men, not in women, nor was there any association with other lifestyle or metabolic factors. By providing much sought-after prevalence estimates for AMD from Central Europe, our data underscores a substantial proportion of the adult population with signs of early AMD, including individuals younger than 50 years. This supports the notion that early AMD features in the young might be under-acknowledged.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167181PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125704PMC
August 2017

The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

G3 (Bethesda) 2016 12 7;6(12):4035-4046. Epub 2016 Dec 7.

German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany

The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 mice. The Scube3 mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.116.033670DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144972PMC
December 2016

From eyeless to neurological diseases.

Authors:
Jochen Graw

Exp Eye Res 2017 03 22;156:5-9. Epub 2015 Nov 22.

Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstaedter Landstr, 1, D-85764 Neuherberg, Germany. Electronic address:

Age-related cataracts are frequently associated with degenerative changes in the ocular lens including the aggregation of proteins - mainly crystallins, but also other proteins including amyloids (Aβ) leading to the hypothesis that cataracts could be used as "biomarkers" for Alzheimer disease. Even if this hypothesis was rejected by David Beebe's last paper (Bei et al., Exp. Eye Res., 2015), it is a fascinating aspect to look for commonalities between eye diseases and neurological disorders. In this review, I discuss such commonalities between eye and brain mainly from a developmental point of view. The finding of the functional homology of the Drosophila eyeless gene with the mammalian Pax6 gene marks a first highlight in the developmental genetics of the eye - this result destroyed the "dogma" of the different evolutionary routes of eye development in flies and mammals. The second highlight was the finding that Pax6 is also involved in the development of the forebrain supporting the pleiotropic role of many genes. These findings opened a new avenue for research showing that a broad variety of transcription factors, but also structural proteins are involved both, in eye and brain development as well as into the maintenance of the functional integrity of the corresponding tissue(s). In this review recent findings are summarized demonstrating that genes whose mutations have been identified first to be causative for congenital or juvenile eye disorders are also involved in regenerative processes and neurogenesis (Pax6), but also in neurodegenerative diseases like Parkinson (e.g. Pitx3) or in neurological disorders like Schizophrenia (e.g. Crybb1, Crybb2).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2015.11.006DOI Listing
March 2017

Meis1 coordinates a network of genes implicated in eye development and microphthalmia.

Development 2015 Sep 7;142(17):3009-20. Epub 2015 Aug 7.

Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c/Nicolás Cabrera, 1, Madrid E-28049, Spain CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, 1, Madrid E-28049, Spain

Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degree. Sporadic and hereditary microphthalmos have been associated with heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, which encodes a transcription factor with evolutionarily conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment in adult mice. By combining analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to its preferential association with Hox-Pbx BSs in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components of the Notch signaling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1(-/-) embryos boundaries among the different eye territories are shifted or blurred. We propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, and represents an additional candidate for syndromic cases of these ocular malformations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.122176DOI Listing
September 2015

Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

Authors:
Martin Hrabě de Angelis George Nicholson Mohammed Selloum Jacqui White Hugh Morgan Ramiro Ramirez-Solis Tania Sorg Sara Wells Helmut Fuchs Martin Fray David J Adams Niels C Adams Thure Adler Antonio Aguilar-Pimentel Dalila Ali-Hadji Gregory Amann Philippe André Sarah Atkins Aurelie Auburtin Abdel Ayadi Julien Becker Lore Becker Elodie Bedu Raffi Bekeredjian Marie-Christine Birling Andrew Blake Joanna Bottomley Mike Bowl Véronique Brault Dirk H Busch James N Bussell Julia Calzada-Wack Heather Cater Marie-France Champy Philippe Charles Claire Chevalier Francesco Chiani Gemma F Codner Roy Combe Roger Cox Emilie Dalloneau André Dierich Armida Di Fenza Brendan Doe Arnaud Duchon Oliver Eickelberg Chris T Esapa Lahcen El Fertak Tanja Feigel Irina Emelyanova Jeanne Estabel Jack Favor Ann Flenniken Alessia Gambadoro Lilian Garrett Hilary Gates Anna-Karin Gerdin George Gkoutos Simon Greenaway Lisa Glasl Patrice Goetz Isabelle Goncalves Da Cruz Alexander Götz Jochen Graw Alain Guimond Wolfgang Hans Geoff Hicks Sabine M Hölter Heinz Höfler John M Hancock Robert Hoehndorf Tertius Hough Richard Houghton Anja Hurt Boris Ivandic Hughes Jacobs Sylvie Jacquot Nora Jones Natasha A Karp Hugo A Katus Sharon Kitchen Tanja Klein-Rodewald Martin Klingenspor Thomas Klopstock Valerie Lalanne Sophie Leblanc Christoph Lengger Elise le Marchand Tonia Ludwig Aline Lux Colin McKerlie Holger Maier Jean-Louis Mandel Susan Marschall Manuel Mark David G Melvin Hamid Meziane Kateryna Micklich Christophe Mittelhauser Laurent Monassier David Moulaert Stéphanie Muller Beatrix Naton Frauke Neff Patrick M Nolan Lauryl Mj Nutter Markus Ollert Guillaume Pavlovic Natalia S Pellegata Emilie Peter Benoit Petit-Demoulière Amanda Pickard Christine Podrini Paul Potter Laurent Pouilly Oliver Puk David Richardson Stephane Rousseau Leticia Quintanilla-Fend Mohamed M Quwailid Ildiko Racz Birgit Rathkolb Fabrice Riet Janet Rossant Michel Roux Jan Rozman Ed Ryder Jennifer Salisbury Luis Santos Karl-Heinz Schäble Evelyn Schiller Anja Schrewe Holger Schulz Ralf Steinkamp Michelle Simon Michelle Stewart Claudia Stöger Tobias Stöger Minxuan Sun David Sunter Lydia Teboul Isabelle Tilly Glauco P Tocchini-Valentini Monica Tost Irina Treise Laurent Vasseur Emilie Velot Daniela Vogt-Weisenhorn Christelle Wagner Alison Walling Bruno Weber Olivia Wendling Henrik Westerberg Monja Willershäuser Eckhard Wolf Anne Wolter Joe Wood Wolfgang Wurst Ali Önder Yildirim Ramona Zeh Andreas Zimmer Annemarie Zimprich Chris Holmes Karen P Steel Yann Herault Valérie Gailus-Durner Ann-Marie Mallon Steve Dm Brown

Nat Genet 2015 Sep 27;47(9):969-978. Epub 2015 Jul 27.

MRC Harwell, Medical Research Council, Harwell, UK.

The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3360DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4564951PMC
September 2015

Functional compensation among HMGN variants modulates the DNase I hypersensitive sites at enhancers.

Genome Res 2015 Sep 8;25(9):1295-308. Epub 2015 Jul 8.

Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;

DNase I hypersensitive sites (DHSs) are a hallmark of chromatin regions containing regulatory DNA such as enhancers and promoters; however, the factors affecting the establishment and maintenance of these sites are not fully understood. We now show that HMGN1 and HMGN2, nucleosome-binding proteins that are ubiquitously expressed in vertebrate cells, maintain the DHS landscape of mouse embryonic fibroblasts (MEFs) synergistically. Loss of one of these HMGN variants led to a compensatory increase of binding of the remaining variant. Genome-wide mapping of the DHSs in Hmgn1(-/-), Hmgn2(-/-), and Hmgn1(-/-)n2(-/-) MEFs reveals that loss of both, but not a single HMGN variant, leads to significant remodeling of the DHS landscape, especially at enhancer regions marked by H3K4me1 and H3K27ac. Loss of HMGN variants affects the induced expression of stress-responsive genes in MEFs, the transcription profiles of several mouse tissues, and leads to altered phenotypes that are not seen in mice lacking only one variant. We conclude that the compensatory binding of HMGN variants to chromatin maintains the DHS landscape, and the transcription fidelity and is necessary to retain wild-type phenotypes. Our study provides insight into mechanisms that maintain regulatory sites in chromatin and into functional compensation among nucleosome binding architectural proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.192229.115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561489PMC
September 2015