Publications by authors named "Jason Velasco"

6 Publications

  • Page 1 of 1

A modular protein subunit vaccine candidate produced in yeast confers protection against SARS-CoV-2 in non-human primates.

bioRxiv 2021 Jul 14. Epub 2021 Jul 14.

Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>10 ) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.07.13.452251DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288147PMC
July 2021

Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques.

Cell 2021 06 1;184(13):3467-3473.e11. Epub 2021 Jun 1.

Bioqual, Rockville, MD 20852, USA.

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 10, 5 × 10, 1.125 × 10, or 2 × 10 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 10 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 10 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.05.040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166510PMC
June 2021

Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques.

JCI Insight 2021 04 28;6(10). Epub 2021 Apr 28.

Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.

Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.148494DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262352PMC
April 2021

Low-Dose Ad26.COV2.S Protection Against SARS-CoV-2 Challenge in Rhesus Macaques.

bioRxiv 2021 Jan 27. Epub 2021 Jan 27.

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26) vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. In this study, we evaluated the immunogenicity and protective efficacy of reduced doses of Ad26.COV2.S. 30 rhesus macaques were immunized once with 1×10 , 5×10 , 1.125×10 , or 2×10 vp Ad26.COV2.S or sham and were challenged with SARS-CoV-2 by the intranasal and intratracheal routes. Vaccine doses as low as 2×10 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125×10 vp were required for protection in nasal swabs. Activated memory B cells as well as binding and neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show evidence of virologic, immunologic, histopathologic, or clinical enhancement of disease compared with sham controls. These data demonstrate that a single immunization with a relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques. Moreover, our findings show that a higher vaccine dose may be required for protection in the upper respiratory tract compared with the lower respiratory tract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.01.27.428380DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852276PMC
January 2021

SARS-CoV-2 infection protects against rechallenge in rhesus macaques.

Science 2020 08 20;369(6505):812-817. Epub 2020 May 20.

Janssen Vaccines & Prevention BV, Leiden, Netherlands.

An understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. After the initial viral clearance, animals were rechallenged with SARS-CoV-2 and showed 5 log reductions in median viral loads in bronchoalveolar lavage and nasal mucosa compared with after the primary infection. Anamnestic immune responses after rechallenge suggested that protection was mediated by immunologic control. These data show that SARS-CoV-2 infection induced protective immunity against reexposure in nonhuman primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abc4776DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243369PMC
August 2020

DNA vaccine protection against SARS-CoV-2 in rhesus macaques.

Science 2020 08 20;369(6505):806-811. Epub 2020 May 20.

Bioqual, Rockville, MD 20852, USA.

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. After vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with viral loads in sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abc6284DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243363PMC
August 2020
-->