Publications by authors named "Jacob Skewes"

6 Publications

  • Page 1 of 1

3D Printing Improved Testicular Prostheses: Using Lattice Infill Structure to Modify Mechanical Properties.

Front Surg 2021 20;8:626143. Epub 2021 Apr 20.

Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.

Patients often opt for implantation of testicular prostheses following orchidectomy for cancer or torsion. Recipients of testicular prostheses report issues regarding firmness, shape, size, and position, aspects of which relate to current limitations of silicone materials used and manufacturing methods for soft prostheses. We aim to create a 3D printable testicular prosthesis which mimics the natural shape and stiffness of a human testicle using a lattice infill structure. Porous testicular prostheses were engineered with relative densities from 0.1 to 0.9 using a repeating cubic unit cell lattice inside an anatomically accurate testicle 3D model. These models were printed using a multi-jetting process with an elastomeric material and compared with current market prostheses using shore hardness tests. Additionally, standard sized porous specimens were printed for compression testing to verify and match the stiffness to human testicle elastic modulus (E-modulus) values from literature. The resulting 3D printed testicular prosthesis of relative density between 0.3 and 0.4 successfully achieved a reduction of its bulk compressive E-modulus from 360 KPa to a human testicle at 28 Kpa. Additionally, this is the first study to quantitatively show that current commercial testicular prostheses are too firm compared to native tissue. 3D printing allows us to create metamaterials that match the properties of human tissue to create customisable patient specific prostheses. This method expands the use cases for existing biomaterials by tuning their properties and could be applied to other implants mimicking native tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fsurg.2021.626143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093764PMC
April 2021

An advanced prosthetic manufacturing framework for economic personalised ear prostheses.

Sci Rep 2020 07 10;10(1):11453. Epub 2020 Jul 10.

Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.

Craniofacial prostheses are commonly used to restore aesthetics for those suffering from malformed, damaged, or missing tissue. Traditional fabrication is costly, uncomfortable for the patient, and laborious; involving several hours of hand-crafting by a prosthetist, with the results highly dependent on their skill level. In this paper, we present an advanced manufacturing framework employing three-dimensional scanning, computer-aided design, and computer-aided manufacturing to efficiently fabricate patient-specific ear prostheses. Three-dimensional scans were taken of ears of six participants using a structured light scanner. These were processed using software to model the prostheses and 3-part negative moulds, which were fabricated on a low-cost desktop 3D printer, and cast with silicone to produce ear prostheses. The average cost was approximately $3 for consumables and $116 for 2 h of labour. An injection method with smoothed 3D printed ABS moulds was also developed at a cost of approximately $155 for consumables and labour. This contrasts with traditional hand-crafted prostheses which range from $2,000 to $7,000 and take around 14 to 15 h of labour. This advanced manufacturing framework provides potential for non-invasive, low cost, and high-accuracy alternative to current techniques, is easily translatable to other prostheses, and has potential for further cost reduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-67945-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351946PMC
July 2020

Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: development and mechanical testing.

Biomed Eng Online 2020 Jul 1;19(1):55. Epub 2020 Jul 1.

Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia.

Background: Three-dimensional (3D) printing is a promising technology, but the limitations are often poorly understood. We compare different 3D printing methods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market.

Methods: A prototype dilator was 3D printed vertically orientated on a low-cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on an SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped.

Results: The horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators, respectively (503 g vs 283 g vs 163 g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is the most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000.

Conclusions: Low-cost FDM 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise be achieved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12938-020-00799-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329536PMC
July 2020

Multi-colour extrusion fused deposition modelling: a low-cost 3D printing method for anatomical prostate cancer models.

Sci Rep 2020 06 19;10(1):10004. Epub 2020 Jun 19.

Redcliffe Hospital, Metro North Hospital Health Service, Queensland, Australia.

Three-dimensional (3D) printed prostate cancer models are an emerging adjunct for urological surgical planning and patient education, however published methods are costly which limits their translation into clinical practice. Multi-colour extrusion fused deposition modelling (FDM) can be used to create 3D prostate cancer models of a quality comparable to more expensive techniques at a fraction of the cost. Three different 3D printing methods were used to create the same 3D prostate model: FDM, colour jet printing (CJP) and material jetting (MJ), with a calculated cost per model of USD 20, USD 200 and USD 250 respectively. When taking into account the cost, the FDM prostate models are the most preferred 3D printing method by surgeons. This method could be used to manufacture low-cost 3D printed models across other medical disciplines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-67082-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7305153PMC
June 2020

Design of an Open-Source, Low-Cost Bioink and Food Melt Extrusion 3D Printer.

J Vis Exp 2020 03 2(157). Epub 2020 Mar 2.

Science and Engineering Faculty, Queensland University of Technology (QUT).

Three-dimensional (3D) printing is an increasingly popular manufacturing technique that allows highly complex objects to be fabricated with no retooling costs. This increasing popularity is partly driven by falling barriers to entry such as system set-up costs and ease of operation. The following protocol presents the design and construction of an Additive Manufacturing Melt Extrusion (ADDME) 3D printer for the fabrication of custom parts and components. ADDME has been designed with a combination of 3D-printed, laser-cut, and online-sourced components. The protocol is arranged into easy-to-follow sections, with detailed diagrams and parts lists under the headings of framing, y-axis and bed, x-axis, extrusion, electronics, and software. The performance of ADDME is evaluated through extrusion testing and 3D printing of complex objects using viscous cream, chocolate, and Pluronic F-127 (a model for bioinks). The results indicate that ADDME is a capable platform for the fabrication of materials and constructs for use in a wide range of industries. The combination of detailed diagrams and video content facilitates access to low-cost, easy-to-operate equipment for individuals interested in 3D printing of complex objects from a wide range of materials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/59834DOI Listing
March 2020

Current applications of three-dimensional printing in urology.

BJU Int 2020 01 6;125(1):17-27. Epub 2019 Nov 6.

Redcliffe Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia.

Three-dimensional (3D) printing or additive manufacturing is a new technology that has seen rapid development in recent years with decreasing costs. 3D printing allows the creation of customised, finely detailed constructs. Technological improvements, increased printer availability, decreasing costs, improved cell culture techniques, and biomaterials have enabled complex, novel and individualised medical treatments to be developed. Although the long-term goal of printing biocompatible organs has not yet been achieved, major advances have been made utilising 3D printing in biomedical engineering. In this literature review, we discuss the role of 3D printing in relation to urological surgery. We highlight the common printing methods employed and show examples of clinical urological uses. Currently, 3D printing can be used in urology for education of trainees and patients, surgical planning, creation of urological equipment, and bioprinting. In this review, we summarise the current applications of 3D-printing technology in these areas of urology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bju.14928DOI Listing
January 2020