Publications by authors named "Hoeke A Baarsma"

23 Publications

  • Page 1 of 1

Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle.

Front Cell Dev Biol 2020 9;8:165. Epub 2020 Apr 9.

Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands.

With the ability to switch between proliferative and contractile phenotype, airway smooth muscle (ASM) cells can contribute to the progression of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), in which airway obstruction is associated with ASM hypertrophy and hypercontractility. A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules in various tissues, including ASM cells. AKAPs can anchor the regulatory subunits of protein kinase A (PKA), and guide cellular localization via various targeting domains. Here we investigated whether disruption of the AKAP-PKA interaction, by the cell permeable peptide stearated (st)-Ht31, alters human ASM proliferation and contractility. Treatment of human ASM with st-Ht31 enhanced the expression of protein markers associated with cell proliferation in both cultured cells and intact tissue, although this was not accompanied by an increase in cell viability or cell-cycle progression, suggesting that disruption of AKAP-PKA interaction on its own is not sufficient to drive ASM cell proliferation. Strikingly, st-Ht31 enhanced contractile force generation in human ASM tissue with concomitant upregulation of the contractile protein α-sm-actin. This upregulation of α-sm-actin was independent of mRNA stability, transcription or translation, but was dependent on proteasome function, as the proteasome inhibitor MG-132 prevented the st-Ht31 effect. Collectively, the AKAP-PKA interaction appears to regulate markers of the multi-functional capabilities of ASM, and this alter the physiological function, such as contractility, suggesting potential to contribute to the pathophysiology of airway diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.00165DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160303PMC
April 2020

Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis.

Am J Respir Crit Care Med 2018 12;198(12):1527-1538

Comprehensive Pneumology Center, Ludwig Maximilian University, University Hospital Grosshadern, and Helmholtz Center Munich, member of the German Center of Lung Research, Munich, Germany.

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease characterized by lung epithelial cell injury, increased (myo)fibroblast activation, and extracellular matrix deposition. Extracellular vesicles (EVs) regulate intercellular communication by carrying a variety of signaling mediators, including WNT (wingless/integrated) proteins. The relevance of EVs in pulmonary fibrosis and their potential contribution to disease pathogenesis, however, remain unexplored. To characterize EVs and study the role of EV-bound WNT signaling in IPF. We isolated EVs from BAL fluid (BALF) from experimental lung fibrosis as well as samples from IPF, non-IPF interstitial lung disease (ILD), non-ILD, and healthy volunteers from two independent cohorts. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. Primary human lung fibroblasts (phLFs) were used for EV isolation and analyzed by metabolic activity assays, cell counting, quantitative PCR, and Western blotting upon WNT gain- and loss-of-function studies. We found increased EVs, particularly exosomes, in BALF from experimental lung fibrosis as well as from patients with IPF. WNT5A was secreted on EVs in lung fibrosis and induced by transforming growth factor-β in primary human lung fibroblasts. The phLF-derived EVs induced phLF proliferation, which was attenuated by WNT5A silencing and antibody-mediated inhibition and required intact EV structure. Similarly, EVs from IPF BALF induced phLF proliferation, which was mediated by WNT5A. Increased EVs function as carriers for signaling mediators, such as WNT5A, in IPF and thus contribute to disease pathogenesis. Characterization of EV secretion and composition may lead to novel approaches to diagnose and develop treatments for pulmonary fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201708-1580OCDOI Listing
December 2018

The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

Am J Physiol Lung Cell Mol Physiol 2017 Sep 8;313(3):L507-L515. Epub 2017 Jun 8.

Department of Molecular Pharmacology, University of Groningen, The Netherlands.

Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β-induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00069.2017DOI Listing
September 2017

Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease.

Am J Respir Crit Care Med 2017 07;196(2):172-185

1 Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.

Rationale: Chronic obstructive pulmonary disease (COPD), in particular emphysema, is characterized by loss of parenchymal alveolar tissue and impaired tissue repair. Wingless and INT-1 (WNT)/β-catenin signaling is reduced in COPD; however, the mechanisms thereof, specifically the role of the frizzled (FZD) family of WNT receptors, remain unexplored.

Objectives: To identify and functionally characterize specific FZD receptors that control downstream WNT signaling in impaired lung repair in COPD.

Methods: FZD expression was analyzed in lung homogenates and alveolar epithelial type II (ATII) cells of never-smokers, smokers, patients with COPD, and two experimental COPD models by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunofluorescence. The functional effects of cigarette smoke on FZD4, WNT/β-catenin signaling, and elastogenic components were investigated in primary ATII cells in vitro and in three-dimensional lung tissue cultures ex vivo. Gain- and loss-of-function approaches were applied to determine the effects of FZD4 signaling on alveolar epithelial cell wound healing and repair, as well as on expression of elastogenic components.

Measurements And Main Results: FZD4 expression was reduced in human and experimental COPD lung tissues as well as in primary human ATII cells from patients with COPD. Cigarette smoke exposure down-regulated FZD4 expression in vitro and in vivo, along with reduced WNT/β-catenin activity. Inhibition of FZD4 decreased WNT/β-catenin-driven epithelial cell proliferation and wound closure, and it interfered with ATII-to-ATI cell transdifferentiation and organoid formation, which were augmented by FZD4 overexpression. Moreover, FZD4 restoration by overexpression or pharmacological induction led to induction of WNT/β-catenin signaling and expression of elastogenic components in three-dimensional lung tissue cultures ex vivo.

Conclusions: Reduced FZD4 expression in COPD contributes to impaired alveolar repair capacity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201605-0904OCDOI Listing
July 2017

WNT Signaling in Lung Aging and Disease.

Ann Am Thorac Soc 2016 12;13 Suppl 5:S411-S416

Comprehensive Pneumology Center, Ludwig-Maximilians-University, University Hospital Grosshadern, and Helmholtz Zentrum München, Munich, Germany; members of the German Center for Lung Research (DZL).

Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), represent a significant and increasing health burden. Current therapies are largely symptomatic, and novel therapeutic approaches are needed. Aging has emerged as a contributing factor for the development of both IPF and COPD because their prevalence increases with age, and several pathological features of these diseases resemble classical hallmarks of aging. Aging is thought to be driven in part by aberrant activity of developmental signaling pathways that thus might drive pathological changes, a process termed antagonistic pleiotropy or developmental drift. The developmental WNT pathway is fundamental for lung development, and altered WNT activity has been reported to contribute to the pathogenesis of CLD, in particular to COPD and IPF. Although to date only limited data on WNT signaling during lung aging exist, WNT signal regulation during aging and its effects on age-related pathologies in other organs have recently been investigated. In this review, we discuss evidence of dysregulated WNT signaling in CLD in the context of WNT signal alteration in organ aging and its potential impact on age-related cellular mechanisms, such as senescence or stem cell exhaustion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1513/AnnalsATS.201608-586AWDOI Listing
December 2016

Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD.

J Exp Med 2017 01 15;214(1):143-163. Epub 2016 Dec 15.

Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Ludwig Maximilians University Munich, University Hospital Grosshadern, 81377 Munich, Germany

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. One main pathological feature of COPD is the loss of functional alveolar tissue without adequate repair (emphysema), yet the underlying mechanisms are poorly defined. Reduced WNT-β-catenin signaling is linked to impaired lung repair in COPD; however, the factors responsible for attenuating this pathway remain to be elucidated. Here, we identify a canonical to noncanonical WNT signaling shift contributing to COPD pathogenesis. We demonstrate enhanced expression of noncanonical WNT-5A in two experimental models of COPD and increased posttranslationally modified WNT-5A in human COPD tissue specimens. WNT-5A was increased in primary lung fibroblasts from COPD patients and induced by COPD-related stimuli, such as TGF-β, cigarette smoke (CS), and cellular senescence. Functionally, mature WNT-5A attenuated canonical WNT-driven alveolar epithelial cell wound healing and transdifferentiation in vitro. Lung-specific WNT-5A overexpression exacerbated airspace enlargement in elastase-induced emphysema in vivo. Accordingly, inhibition of WNT-5A in vivo attenuated lung tissue destruction, improved lung function, and restored expression of β-catenin-driven target genes and alveolar epithelial cell markers in the elastase, as well as in CS-induced models of COPD. We thus identify a novel essential mechanism involved in impaired mesenchymal-epithelial cross talk in COPD pathogenesis, which is amenable to therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20160675DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206496PMC
January 2017

Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling.

Mol Cell Pediatr 2016 Dec 7;3(1):34. Epub 2016 Oct 7.

Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany.

Bronchopulmonary dysplasia (BPD) is one of the most common chronic lung diseases in infants caused by pre- and/or postnatal lung injury. BPD is characterized by arrested alveolarization and vascularization due to extracellular matrix remodeling, inflammation, and impaired growth factor signaling. WNT signaling is a critical pathway for normal lung development, and its altered signaling has been shown to be involved in the onset and progression of incurable chronic lung diseases in adulthood, such as chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). In this review, we summarize the impact of WNT signaling on different stages of lung development and its potential contribution to developmental lung diseases, especially BPD, and chronic lung diseases in adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40348-016-0062-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055515PMC
December 2016

Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways.

J Allergy Clin Immunol 2017 Apr 20;139(4):1343-1354.e6. Epub 2016 Aug 20.

Center of Allergy and Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University of Munich and Helmholtz Center Munich, Munich, Germany. Electronic address:

Background: Airway remodeling is a detrimental and refractory process showing age-dependent clinical manifestations that are mechanistically undefined. The leukotriene (LT) and wingless/integrase (Wnt) pathways have been implicated in remodeling, but age-specific expression profiles and common regulators remained elusive.

Objective: We sought to study the activation of the LT and Wnt pathways during early- or late-onset allergic airway inflammation and to address regulatory mechanisms and clinical relevance in normal human bronchial epithelial cells (NHBEs) and nasal polyp tissues.

Methods: Mice were sensitized with house dust mite (HDM) allergens from days 3, 15, or 60 after birth. Remodeling factors in murine bronchoalveolar lavage fluid, lung tissue, or human nasal polyp tissue were analyzed by means of Western blotting, immunoassays, or histology. Regulatory mechanisms were studied in cytokine/HDM-stimulated NHBEs and macrophages.

Results: Bronchoalveolar lavage fluid LT levels were increased in neonatal and adult but reduced in juvenile HDM-sensitized mice. Lungs of neonatally sensitized mice showed increased 5-lipoxygenase levels, whereas adult mice expressed more group 10 secretory phospholipase A, Wnt5a, and transglutaminase 2 (Tgm2). Older mice showed colocalization of Wnt5a and LT enzymes in the epithelium, a pattern also observed in human nasal polyps. IL-4 promoted epithelial Wnt5a secretion, which upregulated macrophage Tgm2 expression, and Tgm2 inhibition in turn reduced LT release. Tgm2, group 10 secretory phospholipase A, and LT enzymes in NHBEs and nasal polyps were refractory to corticosteroids.

Conclusion: Our findings reveal age differences in LT and Wnt pathways during airway inflammation and identify a steroid-resistant cascade of Wnt5a, Tgm2, and LTs, which might represent a therapeutic target for airway inflammation and remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2016.07.014DOI Listing
April 2017

TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8.

FASEB J 2016 05 5;30(5):1823-35. Epub 2016 Feb 5.

Comprehensive Pneumology Center, Helmholtz Center Munich, German Center for Lung Research (DZL), University Hospital Grosshadern, Ludwig Maximilians University Munich, Munich, Germany;

TGF-β is important in lung injury and remodeling processes. TGF-β and Wingless/integrase-1 (WNT) signaling are interconnected; however, the WNT ligand-receptor complexes involved are unknown. Thus, we aimed to identify Frizzled (FZD) receptors that mediate TGF-β-induced profibrotic signaling. MRC-5 and primary human lung fibroblasts were stimulated with TGF-β1, WNT-5A, or WNT-5B in the presence and absence of specific pathway inhibitors. Specific small interfering RNA was used to knock down FZD8. In vivo studies using bleomycin-induced lung fibrosis were performed in wild-type and FZD8-deficient mice. TGF-β1 induced FZD8 specifically via Smad3-dependent signaling in MRC-5 and primary human lung fibroblasts. It is noteworthy that FZD8 knockdown reduced TGF-β1-induced collagen Iα1, fibronectin, versican, α-smooth muscle (sm)-actin, and connective tissue growth factor. Moreover, bleomycin-induced lung fibrosis was attenuated in FZD8-deficient mice in vivo Although inhibition of canonical WNT signaling did not affect TGF-β1-induced gene expression in vitro, noncanonical WNT-5B mimicked TGF-β1-induced fibroblast activation. FZD8 knockdown reduced both WNT-5B-induced gene expression of fibronectin and α-sm-actin, as well as WNT-5B-induced changes in cellular impedance. Collectively, our findings demonstrate a role for FZD8 in TGF-β-induced profibrotic signaling and imply that WNT-5B may be the ligand for FZD8 in these responses.-Spanjer, A. I. R., Baarsma, H. A., Oostenbrink, L. M., Jansen, S. R., Kuipers, C. C., Lindner, M., Postma, D. S., Meurs, H., Heijink, I. H., Gosens, R., Königshoff, M. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500129DOI Listing
May 2016

miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis.

Int J Biochem Cell Biol 2014 Aug 19;53:432-41. Epub 2014 Jun 19.

Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of idiopathic interstitial pneumonia. MicroRNAs (miRNAs), short, single-stranded RNAs that regulate protein expression in a post-transcriptional manner, have recently been demonstrated to contribute to IPF pathogenesis. We have previously identified WNT1-inducible signaling pathway protein 1 (WISP1) as a highly expressed pro-fibrotic mediator in IPF, but the underlying mechanisms resulting in increased WISP1 expression, remain elusive. Here, we investigated whether WISP1 is a target of miRNA regulation. We applied a novel supervised machine learning approach, which predicted miR-30a/d and miR-92a target sites in regions of the human WISP1 3'UTR preferentially bound by the miRNA ribonucleoprotein complex. Both miRNAs were decreased in IPF samples, whereas WISP1 protein was increased. We demonstrated further that transforming growth factor (TGF)-β1-induced WISP1 expression in primary lung fibroblasts in vitro and lung homogenates in vivo. Notably, miR-30a and miR-92a reversed TGF-β1-induced WISP1 mRNA expression in lung fibroblasts. Moreover, miR-92a inhibition increased WISP1 protein expression in lung fibroblasts. An inverse relationship for WISP1 and miR-92a was found in a TGF-β1 dependent lung fibrosis model in vivo. Finally, we found significantly increased WISP1 expression in primary IPF fibroblasts, which negatively correlated with miR-92a level ex vivo. Altogether, our findings indicate a regulatory role of miR-92a for WISP1 expression in pulmonary fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2014.06.011DOI Listing
August 2014

Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy.

Respir Res 2013 Nov 1;14:117. Epub 2013 Nov 1.

Department of Respiratory Medicine, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University Medical Centre + (MUMC+), PO box 5800, 6202, AZ Maastricht, The Netherlands.

Background: Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover; two crucial processes that determine muscle mass. In the present study we investigated the effect of the selective GSK-3 inhibitor SB216763 on muscle mass in a guinea pig model of lipopolysaccharide (LPS)-induced pulmonary inflammation-associated muscle atrophy.

Methods: Guinea pigs were pretreated with either intranasally instilled SB216763 or corresponding vehicle prior to each LPS/saline challenge twice weekly. Pulmonary inflammation was confirmed and indices of muscle mass were determined after 12 weeks. Additionally, cultured skeletal muscle cells were incubated with tumor necrosis factor α (TNF-α) or glucocorticoids (GCs) to model the systemic effects of pulmonary inflammation on myogenesis, in the presence or absence of GSK-3 inhibitors.

Results: Repeated LPS instillation induced muscle atrophy based on muscle weight and muscle fiber cross sectional area. Intriguingly, GSK-3 inhibition using SB216763 prevented the LPS-induced muscle mass decreases and myofiber atrophy. Indices of protein turnover signaling were unaltered in guinea pig muscle. Interestingly, inhibition of myogenesis of cultured muscle cells by TNF-α or synthetic GCs was prevented by GSK-3 inhibitors.

Conclusions: In a guinea pig model of LPS-induced pulmonary inflammation, GSK-3 inhibition prevents skeletal muscle atrophy without affecting pulmonary inflammation. Resistance to inflammation- or GC-induced impairment of myogenic differentiation, imposed by GSK-3 inhibition, suggests that sustained myogenesis may contribute to muscle mass maintenance despite persistent pulmonary inflammation. Collectively, these results warrant further exploration of GSK-3 as a potential novel drug target to prevent or reverse muscle wasting in COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1465-9921-14-117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176095PMC
November 2013

Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: I. Effects on lung remodeling and pathology.

Respir Res 2013 Oct 23;14:113. Epub 2013 Oct 23.

Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Background: Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase that regulates multiple signalling proteins and transcription factors involved in a myriad of cellular processes. The kinase acts as a negative regulator in β-catenin signalling and is critically involved in the smad pathway. Activation of both pathways may contribute to pulmonary features of chronic obstructive pulmonary disease (COPD).

Methods: In the present study, we investigated the effect of the selective GSK-3 inhibitor SB216763 on pulmonary pathology in a guinea pig model of lipopolysaccharide (LPS)-induced COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pre-treated with either intranasally instilled SB216763 or corresponding vehicle 30 min prior to each LPS/saline challenge.

Results: Repeated LPS exposures activated β-catenin signalling, primarily in the airway epithelium and submucosa. LPS also induced pulmonary inflammation and tissue remodelling as indicated by inflammatory cell influx, increased pulmonary fibronectin expression and enhanced small airway collagen content. Inhibition of GSK-3 by SB216763 did not affect LPS-induced inflammatory cell influx, but prevented the small airway remodelling and, unexpectedly, inhibited the activation of β-catenin in vivo. LPS or SB216763 treatment had no effect on the airway smooth muscle content and alveolar airspace size. However, GSK-3 inhibition prevented LPS-induced right ventricle hypertrophy.

Conclusions: Our findings indicate that GSK-3 inhibition prevents LPS-induced pulmonary pathology in guinea pigs, and that locally reduced LPS-induced β-catenin activation appears in part to underlie this effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1465-9921-14-113DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015129PMC
October 2013

The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets.

Pharmacol Ther 2013 Apr 14;138(1):66-83. Epub 2013 Jan 14.

Department of Molecular Pharmacology, GRIAC research institute, University of Groningen, Groningen, The Netherlands.

Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharmthera.2013.01.002DOI Listing
April 2013

Glycogen synthase kinase-3 (GSK-3) regulates TGF-β₁-induced differentiation of pulmonary fibroblasts.

Br J Pharmacol 2013 Jun;169(3):590-603

Department of Molecular Pharmacology, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.

Background: Chronic lung diseases such as asthma, COPD and pulmonary fibrosis are characterized by abnormal extracellular matrix (ECM) turnover. TGF-β is a key mediator stimulating ECM production by recruiting and activating lung fibroblasts and initiating their differentiation process into more active myofibroblasts. Glycogen synthase kinase-3 (GSK-3) regulates various intracellular signalling pathways; its role in TGF-β₁-induced myofibroblast differentiation is currently largely unknown.

Purpose: To determine the contribution of GSK-3 signalling in TGF-β₁-induced myofibroblast differentiation.

Experimental Approach: We used MRC5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD. Protein and mRNA expression were determined by immunoblotting and RT-PCR analysis respectively.

Results: Stimulation of MRC5 and primary human lung fibroblasts with TGF-β₁ resulted in time- and dose-dependent increases of α-sm-actin and fibronectin expression, indicative of myofibroblast differentiation. Pharmacological inhibition of GSK-3 by SB216763 dose-dependently attenuated TGF-β₁-induced expression of these myofibroblasts markers. Moreover, silencing of GSK-3 by siRNA or pharmacological inhibition by CT/CHIR99021 fully inhibited the TGF-β₁-induced expression of α-sm-actin and fibronectin. The effect of GSK-3 inhibition on α-sm-actin expression was similar in fibroblasts from individuals with and without COPD. Neither smad, NF-κB nor ERK1/2 were involved in the inhibitory actions of GSK-3 inhibition by SB126763 on myofibroblast differentiation. Rather, SB216763 increased the phosphorylation of CREB, which in its phosphorylated form acts as a functional antagonist of TGF-β/smad signalling.

Conclusion And Implication: We demonstrate that GSK-3 signalling regulates TGF-β₁-induced myofibroblast differentiation by regulating CREB phosphorylation. GSK-3 may constitute a useful target for treatment of chronic lung diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.12098DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682707PMC
June 2013

Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells.

FASEB J 2013 Apr 19;27(4):1631-43. Epub 2012 Dec 19.

Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Transforming growth factor β (TGF-β), a key mediator of fibrotic responses, is increased in asthma and drives airway remodeling by inducing expression of extracellular matrix (ECM) proteins. We investigated the molecular mechanisms underlying TGF-β-induced ECM expression by airway smooth muscle cells and demonstrate a novel link between TGF-β and Wingless/integrase 1 (WNT) signaling in ECM deposition. Airway smooth muscle expresses abundant WNT ligands, with the noncanonical WNT-5A being the most profoundly expressed. Interestingly, WNT-5A shows ∼2-fold higher abundance in airway smooth muscle cells isolated from individuals with asthma than individuals without asthma. WNT-5A is markedly induced in response to TGF-β (4-16-fold; EC₅₀ 0.3 ng/ml) and is required for collagen and fibronectin expression by airway smooth muscle. WNT-5A engages noncanonical WNT signaling pathways, as inhibition of Ca(2+) and c-Jun N-terminal kinase (JNK) signaling attenuated this TGF-β response, whereas the canonical WNT antagonist Dickkopf 1 (DKK-1) did not. Accordingly, WNT-5A induced JNK phosphorylation and nuclear translocation of nuclear factor of activated T cells c1 (NFATc1). Furthermore, silencing of the WNT-5A receptors Frizzled 8 (FZD8) and RYK attenuated TGF-β-induced ECM expression. Collectively, these findings demonstrate that noncanonical WNT-5A signaling is activated by and necessary for TGF-β-induced ECM production by airway smooth muscle cells, which could have significance in asthma pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-217539DOI Listing
April 2013

Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function.

Pulm Pharmacol Ther 2013 Feb 31;26(1):50-63. Epub 2012 Jul 31.

Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, 675 McDermot Ave, Winnipeg, Canada.

The airway smooth muscle (ASM) plays an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD). ASM cells express a wide range of receptors involved in contraction, growth, matrix protein production and the secretion of cytokines and chemokines. Transforming growth factor beta (TGF-β) is one of the major players in determining the structural and functional abnormalities of the ASM in asthma and COPD. It is increasingly evident that TGF-β functions as a master switch, controlling a network of intracellular and autocrine signaling loops that effect ASM phenotype and function. In this review, the various elements that participate in non-canonical TGF-β signaling, including MAPK, PI3K, WNT/β-catenin, and Ca(2+), are discussed, focusing on their effect on ASM phenotype and function. In addition, new aspects of ASM biology and their possible association with non-canonical TGF-β signaling will be discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2012.07.006DOI Listing
February 2013

Activation of WNT/β-catenin signaling in pulmonary fibroblasts by TGF-β₁ is increased in chronic obstructive pulmonary disease.

PLoS One 2011 30;6(9):e25450. Epub 2011 Sep 30.

Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.

Background: Chronic obstructive pulmonary disease (COPD) is characterized by abnormal extracellular matrix (ECM) turnover. Recently, activation of the WNT/β-catenin pathway has been associated with abnormal ECM turnover in various chronic diseases. We determined WNT-pathway gene expression in pulmonary fibroblasts of individuals with and without COPD and disentangled the role of β-catenin in fibroblast phenotype and function.

Methods: We assessed the expression of WNT-pathway genes and the functional role of β-catenin, using MRC-5 human lung fibroblasts and primary pulmonary fibroblasts of individuals with and without COPD.

Results: Pulmonary fibroblasts expressed mRNA of genes required for WNT signaling. Stimulation of fibroblasts with TGF-β₁, a growth factor important in COPD pathogenesis, induced WNT-5B, FZD₈, DVL3 and β-catenin mRNA expression. The induction of WNT-5B, FZD₆, FZD₈ and DVL3 mRNA by TGF-β₁ was higher in fibroblasts of individuals with COPD than without COPD, whilst basal expression was similar. Accordingly, TGF-β₁ activated β-catenin signaling, as shown by an increase in transcriptionally active and total β-catenin protein expression. Furthermore, TGF-β₁induced the expression of collagen1α1, α-sm-actin and fibronectin, which was attenuated by β-catenin specific siRNA and by pharmacological inhibition of β-catenin, whereas the TGF-β₁-induced expression of PAI-1 was not affected. The induction of transcriptionally active β-catenin and subsequent fibronectin deposition induced by TGF-β₁ were enhanced in pulmonary fibroblasts from individuals with COPD.

Conclusions: β-catenin signaling contributes to ECM production by pulmonary fibroblasts and contributes to myofibroblasts differentiation. WNT/β-catenin pathway expression and activation by TGF-β₁ is enhanced in pulmonary fibroblasts from individuals with COPD. This suggests an important role of the WNT/β-catenin pathway in regulating fibroblast phenotype and function in COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025450PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3184127PMC
January 2012

β-Catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells.

Am J Physiol Lung Cell Mol Physiol 2011 Dec 9;301(6):L956-65. Epub 2011 Sep 9.

Department of Molecular Pharmacology, University of Groningen, The Netherlands.

Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway remodeling with altered extracellular matrix (ECM) deposition. Transforming growth factor-β(1) (TGF-β(1)) is upregulated in asthma and COPD and contributes to tissue remodeling in the airways by driving ECM production by structural cells, including airway smooth muscle. In this study, we investigated the activation of β-catenin signaling and its contribution to ECM production by airway smooth muscle cells in response to TGF-β(1). Stimulation of airway smooth muscle cells with TGF-β(1) resulted in a time-dependent increase of total and nonphosphorylated β-catenin protein expression via induction of β-catenin mRNA and inhibition of GSK-3. In addition, the TGF-β(1)-induced β-catenin activated TCF/LEF-dependent gene transcription, as determined by the β-catenin sensitive TOP-flash luciferase reporter assay. Furthermore, TGF-β(1) stimulation increased mRNA expression of collagen Iα1, fibronectin, versican, and PAI-1. Pharmacological inhibition of β-catenin by PKF115-584 or downregulation of β-catenin expression by specific small interfering RNA (siRNA) substantially inhibited TGF-β(1)-induced expression of the ECM genes. Fibronectin protein deposition by airway smooth muscle cells in response to TGF-β(1) was also inhibited by PKF115-584 and β-catenin siRNA. Moreover, transfection of airway smooth muscle cells with a nondegradable β-catenin mutant (S33Y β-catenin) was sufficient for inducing fibronectin protein expression. Collectively, these findings indicate that β-catenin signaling is activated in response to TGF-β(1) in airway smooth muscle cells, which is required and sufficient for the regulation of ECM protein production. Targeting β-catenin-dependent gene transcription may therefore hold promise as a therapeutic intervention in airway remodeling in both asthma and COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00123.2011DOI Listing
December 2011

Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1β-induced cytokine secretion by airway smooth muscle.

Am J Physiol Lung Cell Mol Physiol 2011 Jun 18;300(6):L910-9. Epub 2011 Mar 18.

Department of Molecular Pharmacology, University of Groningen, The Netherlands.

Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase that regulates multiple signaling proteins and transcription factors involved in inflammation. Its role in inflammatory lung diseases, including chronic obstructive pulmonary disease (COPD), is largely unknown. We investigated the role of GSK-3 in the secretion of chemokines and growth factors by human airway smooth muscle cells after exposure to cigarette smoke extract (CSE) or interleukin-1β (IL-1β), important factors involved in the development of COPD. Cultured human airway smooth muscle cells were exposed to increasing concentrations of CSE (1-15%) and IL-1β (0.01-1.0 ng/ml), which induced the secretion of VEGF-A and IL-8, whereas eotaxin secretion was induced by IL-1β only. Inhibition of GSK-3 by the selective inhibitor SB216763 or CHIR/CT99021 attenuated the cytokine and growth factor release induced by CSE and/or IL-1β, without affecting the basal release. Secretion of the cytokines by airway smooth muscle partially depends on NF-κB signaling, and GSK-3 has been implicated in regulating multiple steps in activating the NF-κB signaling pathway. IL-1β treatment induced degradation of the NF-κB inhibitory protein Iκ-Bα followed by nuclear translocation and DNA binding of p65 NF-κB, which were unaffected by inhibition of GSK-3. However, induction of NF-κB-dependent transcriptional activity by IL-1β and CSE was largely reduced upon GSK-3 inhibition by SB216763. Collectively, we demonstrate that CSE and IL-1β activate airway smooth muscle cells to secrete the proinflammatory cytokines IL-8, eotaxin, and VEGF-A. Furthermore, we show that GSK-3 regulates the release of these cytokines induced by CSE and IL-1β by promoting NF-κB-dependent gene transcription.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00232.2010DOI Listing
June 2011

{beta}-Catenin regulates airway smooth muscle contraction.

Am J Physiol Lung Cell Mol Physiol 2010 Aug 14;299(2):L204-14. Epub 2010 May 14.

Dept. of Molecular Pharmacology, Univ. of Groningen, The Netherlands.

beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00020.2010DOI Listing
August 2010

De novo synthesis of {beta}-catenin via H-Ras and MEK regulates airway smooth muscle growth.

FASEB J 2010 Mar 11;24(3):757-68. Epub 2009 Nov 11.

Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

beta-Catenin is a component of adherens junctions that also acts as a transcriptional coactivator when expressed in the nucleus. Growth factors are believed to regulate the nuclear expression of beta-catenin via inactivation of glycogen synthase kinase 3 (GSK-3) by phosphorylation, resulting in increased beta-catenin protein stability. Here, we report on a novel pathway that regulates the expression and nuclear presence of beta-catenin. In proliferating human airway smooth muscle cells, we observed increased expression of beta-catenin, which was required for proliferation. Interestingly, increased beta-catenin expression was accompanied by an increase in beta-catenin mRNA and was independent of beta-catenin liberation from the plasma membrane, suggesting a role for de novo synthesis. This was confirmed using actinomycin D and cycloheximide, which abrogated the induction and nuclear localization of beta-catenin protein. GSK-3 inhibition using SB216763 failed to regulate beta-catenin mRNA. However, expression of dominant negative H-Ras or pharmacological inhibition of MEK reduced serum and TGF-beta-induced beta-catenin mRNA and protein. Collectively, these data indicate that beta-catenin is an important signaling intermediate in airway smooth muscle growth and that its cellular accumulation and nuclear localization require de novo protein synthesis effected, in part, via H-Ras and MEK.-Gosens, R., Baarsma, H. A., Heijink, I. H., Oenema, T. A., Halayko, A. J., Meurs, H., Schmidt, M. De novo synthesis of beta-catenin via H-Ras and MEK regulates airway smooth muscle growth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.09-136325DOI Listing
March 2010

Insulin increases the expression of contractile phenotypic markers in airway smooth muscle.

Am J Physiol Cell Physiol 2007 Jul 25;293(1):C429-39. Epub 2007 Apr 25.

Dept. of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.

We have previously demonstrated that long-term exposure of bovine tracheal smooth muscle (BTSM) strips to insulin induces a functional hypercontractile phenotype. To elucidate molecular mechanisms by which insulin might induce maturation of contractile phenotype airway smooth muscle (ASM) cells, we investigated effects of insulin stimulation in serum-free primary BTSM cell cultures on protein accumulation of specific contractile phenotypic markers and on the abundance and stability of mRNA encoding these markers. In addition, we used microscopy to assess insulin effects on ASM cell morphology, phenotype, and induction of phosphatidylinositol (PI) 3-kinase signaling. It was demonstrated that protein and mRNA levels of smooth muscle-specific contractile phenotypic markers, including sm-myosin, are significantly increased after stimulation of cultured BTSM cells with insulin (1 microM) for 8 days compared with cells treated with serum-free media, whereas mRNA stability was unaffected. In addition, insulin treatment promoted the formation of large, elongate ASM cells, characterized by dramatic accumulation of contractile phenotype marker proteins and phosphorylated p70(S6K) (downstream target of PI 3-kinase associated with ASM maturation). Insulin effects on protein accumulation and cell morphology were abrogated by combined pretreatment with the Rho kinase inhibitor Y-27632 (1 microM) or the PI 3-kinase inhibitor LY-294002 (10 microM), indicating that insulin increases the expression of contractile phenotypic markers in BTSM in a Rho kinase- and PI 3-kinase-dependent fashion. In conclusion, insulin increases transcription and protein expression of contractile phenotypic markers in ASM. This could have important implications for the use of recently approved aerosolized insulin formulations in diabetes mellitus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00502.2006DOI Listing
July 2007