Publications by authors named "Esa Aalto"

3 Publications

  • Page 1 of 1

Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.

Mol Ecol 2016 01 18;25(2):581-97. Epub 2016 Jan 18.

Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland.

Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.13489DOI Listing
January 2016

Cytoplasmic male sterility contributes to hybrid incompatibility between subspecies of Arabidopsis lyrata.

G3 (Bethesda) 2013 Oct 3;3(10):1727-40. Epub 2013 Oct 3.

Department of Biology, University of Oulu, FIN-90014 Oulu, Finland.

In crosses between evolutionarily diverged populations, genomic incompatibilities may result in sterile hybrids, indicating evolution of reproductive isolation. In several plant families, crosses within a population can also lead to male sterile progeny because of conflict between the maternally and biparentally inherited genomes. We examined hybrid fertility between subspecies of the perennial outcrossing self-incompatible Lyrate rockcress (Arabidopsis lyrata) in large reciprocal F2 progenies and three generations of backcrosses. In one of the reciprocal F2 progenies, almost one-fourth of the plants were male-sterile. Correspondingly, almost one-half of the plants in one of the four reciprocal backcross progenies expressed male sterility. In an additional four independent F2 and backcross families, three segregated male sterility. The observed asymmetrical hybrid incompatibility is attributable to male sterility factors in one cytoplasm, for which the other population lacks effective fertility restorers. Genotyping of 96 molecular markers and quantitative trait locus mapping revealed that only 60% of the plants having the male sterile cytoplasm and lacking the corresponding restorers were phenotypically male-sterile. Genotyping data showed that there is only one restorer locus, which mapped to a 600-kb interval at the top of chromosome 2 in a region containing a cluster of pentatricopeptide repeat genes. Male fertility showed no trade-off with seed production. We discuss the role of cytoplasm and genomic conflict in incipient speciation and conclude that cytoplasmic male sterility-lowering hybrid fitness is a transient effect with limited potential to form permanent reproductive barriers between diverged populations of hermaphrodite self-incompatible species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.113.007815DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789797PMC
October 2013

Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae).

Am J Bot 2012 Aug 20;99(8):1314-22. Epub 2012 Jul 20.

Department of Biology, University of Oulu, Finland.

Premise Of The Study: Plant populations that face new environments adapt and diverge simultaneously, and both processes leave footprints in their genetic diversity. Arabidopsis lyrata is an excellent species for studying these processes. Pairs of populations and subspecies of A. lyrata represent different stages of divergence. These populations are also known to be locally adapted and display various stages of emerging reproductive isolation.

Methods: We used nucleotide diversity data from 19 loci to estimate divergence times and levels of diversity among nine A. lyrata populations. Traditional distance-based methods and model-based clustering analysis were used to supplement pairwise coalescence-based analysis of divergence.

Key Results: Estimated divergence times varied from 130,000 generations between North American and European subspecies to 39,000 generations between central European and Scandinavian populations. In concordance with previous studies, the highest level of diversity was found in Central Europe and the lowest in North America and a diverged Russian Karhumäki population. Local adaptation among Northern and central European populations has emerged during the last 39,000 generations. Populations that are reproductively isolated by prezygotic mechanisms have been separated for a longer time period of ∼70,000 generations but still have shared nucleotide polymorphism.

Conclusions: In A. lyrata, reproductively isolated populations started to diverge ∼70,000 generations ago and more closely related, locally adapted populations have been separate lineages for ∼39,000 generations. However, based on the posterior distribution of divergence times, the processes leading to reproductive isolation and local adaptation are likely to temporally coincide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.1100580DOI Listing
August 2012
-->