Publications by authors named "Amy B Manning-Boğ"

20 Publications

  • Page 1 of 1

Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice.

Brain 2016 07 13;139(Pt 7):2063-81. Epub 2016 May 13.

1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA

Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/aww117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939702PMC
July 2016

Mesenchymal stromal SB623 cell implantation mitigates nigrostriatal dopaminergic damage in a mouse model of Parkinson's disease.

J Tissue Eng Regen Med 2017 06 6;11(6):1835-1843. Epub 2015 Oct 6.

Center for Health Sciences, SRI International, Menlo Park, CA, USA.

Regenerative medicine for the treatment of motor features in Parkinson's disease (PD) is a promising therapeutic option. Donor cells can simultaneously address multiple pathological mechanisms while responding to the needs of the host tissue. Previous studies have demonstrated that mesenchymal stromal cells (MSCs) promote recovery using various animal models of PD. SanBio Inc. has developed a novel cell type designated SB623, which are adult bone marrow-derived MSCs transfected with Notch intracellular domain. In this preclinical study, SB623 cells protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal injury when transplanted unilaterally into C57BL/6 mouse striatum 3 days prior to toxin exposure. Specifically, mice with the SB623 cell transplants revealed significantly higher levels of striatal dopamine, tyrosine hydroxylase immunoreactivity and stereological nigral cell counts in the ipsilateral hemisphere vs vehicle-treated mice following MPTP administration. Interestingly, improvement in markers of striatal dopaminergic integrity was also noted in the contralateral hemisphere. These data indicate that MSCs transplantation, specifically SB623 cells, may represent a novel therapeutic option to ameliorate damage related to PD, not only at the level of striatal terminals (i.e. the site of implantation) but also at the level of the nigral cell body. Copyright © 2015 John Wiley & Sons, Ltd.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2081DOI Listing
June 2017

Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease.

J Vis Exp 2014 Jan 7(83):e50960. Epub 2014 Jan 7.

Center for Health Sciences, SRI International.

Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3791/50960DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089441PMC
January 2014

Neuroinflammation and α-synuclein accumulation in response to glucocerebrosidase deficiency are accompanied by synaptic dysfunction.

Mol Genet Metab 2014 Feb 11;111(2):152-62. Epub 2013 Dec 11.

Center for Health Sciences, Biosciences Division, SRI International, Menlo Park, CA 94025, USA. Electronic address:

Clinical, epidemiological and experimental studies confirm a connection between the common degenerative movement disorder Parkinson's disease (PD) that affects over 1 million individuals, and Gaucher disease, the most prevalent lysosomal storage disorder. Recently, human imaging studies have implicated impaired striatal dopaminergic neurotransmission in early PD pathogenesis in the context of Gaucher disease mutations, but the underlying mechanisms have yet to be characterized. In this report we describe and characterize two novel long-lived transgenic mouse models of Gba deficiency, along with a subchronic conduritol-ß-epoxide (CBE) exposure paradigm. All three murine models revealed striking glial activation within nigrostriatal pathways, accompanied by abnormal α-synuclein accumulation. Importantly, the CBE-induced, pharmacological Gaucher mouse model replicated this change in dopamine neurotransmission, revealing a markedly reduced evoked striatal dopamine release (approximately 2-fold) that indicates synaptic dysfunction. Other changes in synaptic plasticity markers, including microRNA profile and a 24.9% reduction in post-synaptic density size, were concomitant with diminished evoked dopamine release following CBE exposure. These studies afford new insights into the mechanisms underlying the Parkinson's-Gaucher disease connection, and into the physiological impact of related abnormal α-synuclein accumulation and neuroinflammation on nigrostriatal dopaminergic neurotransmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2013.12.003DOI Listing
February 2014

Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia.

J Neurosci 2013 Oct;33(40):16016-32

Departments of Neurology and Neurological Sciences, Molecular and Cellular Physiology, Microbiology and Immunology, and Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, Neurosciences Graduate Program, Stanford University, Stanford, California 94305, and Center for Health Sciences, SRI International, Menlo Park, California 94025.

Prostaglandin E2 (PGE2), a potent lipid signaling molecule, modulates inflammatory responses through activation of downstream G-protein coupled EP(1-4) receptors. Here, we investigated the cell-specific in vivo function of PGE2 signaling through its E-prostanoid 2 (EP2) receptor in murine innate immune responses systemically and in the CNS. In vivo, systemic administration of lipopolysaccharide (LPS) resulted in a broad induction of cytokines and chemokines in plasma that was significantly attenuated in EP2-deficient mice. Ex vivo stimulation of peritoneal macrophages with LPS elicited proinflammatory responses that were dependent on EP2 signaling and that overlapped with in vivo plasma findings, suggesting that myeloid-lineage EP2 signaling is a major effector of innate immune responses. Conditional deletion of the EP2 receptor in myeloid lineage cells in Cd11bCre;EP2(lox/lox) mice attenuated plasma inflammatory responses and transmission of systemic inflammation to the brain was inhibited, with decreased hippocampal inflammatory gene expression and cerebral cortical levels of IL-6. Conditional deletion of EP2 significantly blunted microglial and astrocytic inflammatory responses to the neurotoxin MPTP and reduced striatal dopamine turnover. Suppression of microglial EP2 signaling also increased numbers of dopaminergic (DA) neurons in the substantia nigra independent of MPTP treatment, suggesting that microglial EP2 may influence development or survival of DA neurons. Unbiased microarray analysis of microglia isolated from adult Cd11bCre;EP2(lox/lox) and control mice demonstrated a broad downregulation of inflammatory pathways with ablation of microglial EP2 receptor. Together, these data identify a cell-specific proinflammatory role for macrophage/microglial EP2 signaling in innate immune responses systemically and in brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.2203-13.2013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787507PMC
October 2013

Evidence of oxidative stress in young and aged DJ-1-deficient mice.

FEBS Lett 2013 May 13;587(10):1562-70. Epub 2013 Apr 13.

The Parkinson's Institute, Department of Basic Research, Sunnyvale, CA, USA.

Loss of DJ-1 function contributes to pathogenesis in Parkinson's disease. Here, we investigate the impact of aging and DJ-1 deficiency in transgenic mice. Ventral midbrain from young DJ-1-deficient mice revealed no change in 4-hydroxy-2-nonenal (4-HNE), but HSP60, HSP40 and striatal dopamine turnover were significantly elevated compared to wildtype. In aged mice, the chaperone response observed in wildtype animals was absent from DJ-1-deficient transgenics, and nigral 4-HNE immunoreactivity was enhanced. These changes were concomitant with increased striatal dopamine levels and uptake. Thus, increased oxidants and diminished protein quality control may contribute to nigral oxidative damage with aging in the model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2013.04.001DOI Listing
May 2013

Isotopic reinforcement of essential polyunsaturated fatty acids diminishes nigrostriatal degeneration in a mouse model of Parkinson's disease.

Toxicol Lett 2011 Nov 10;207(2):97-103. Epub 2011 Aug 10.

Retrotope, Inc., Pre-Clinical and Pharmaceutical Development, Los Altos Hills, CA 94022, USA.

Oxidative damage of membrane polyunsaturated fatty acids (PUFA) is thought to play a major role in mitochondrial dysfunction related to Parkinson's disease (PD). The toxic products formed by PUFA oxidation inflict further damage on cellular components and contribute to neuronal degeneration. Here, we tested the hypothesis that isotopic reinforcement, by deuteration of the bisallylic sites most susceptible to oxidation in PUFA may provide at least partial protection against nigrostriatal injury in a mouse model of oxidative stress and cell death, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model. Mice were fed a fat-free diet supplemented with saturated acids, oleic acid and essential PUFA: either normal, hydrogenated linoleic (LA, 18:2n-6) and α-linolenic (ALA, 18:3n-3) or deuterated 11,11-D2-LA and 11,11,14,14-D4-ALA in a ratio of 1:1 (to a total of 10% mass fat) for 6 days; each group was divided into two cohorts receiving either MPTP or saline and then continued on respective diets for 6 days. Brain homogenates from mice receiving deuterated PUFA (D-PUFA) vs. hydrogenated PUFA (H-PUFA) demonstrated a significant incorporation of deuterium as measured by isotope ratio mass-spectrometry. Following MPTP exposure, mice fed H-PUFA revealed 78.7% striatal dopamine (DA) depletion compared to a 46.8% reduction in the D-PUFA cohort (as compared to their respective saline-treated controls), indicating a significant improvement in DA concentration with D-PUFA. Similarly, higher levels of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were detected in MPTP-exposure mice administered D-PUFA; however, saline-treated mice revealed no change in DA or DOPAC levels. Western blot analyses of tyrosine hydroxylase (TH) confirmed neuroprotection with D-PUFA, as striatal homogenates showed higher levels of TH immunoreactivity in D-PUFA (88.5% control) vs. H-PUFA (50.4% control) in the MPTP-treated cohorts. In the substantia nigra, a significant improvement was noted in the number of nigral dopaminergic neurons following MPTP exposure in the D-PUFA (79.5% control) vs. H-PUFA (58.8% control) mice using unbiased stereological cell counting. Taken together, these findings indicate that dietary isotopic reinforcement with D-PUFA partially protects against nigrostriatal damage from oxidative injury elicited by MPTP in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2011.07.020DOI Listing
November 2011

Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson's brain.

Mol Neurodegener 2011 Jan 21;6(1). Epub 2011 Jan 21.

Cell and Molecular Biology Department, John A, Burns School of Medicine, University of Hawaii, Honolulu, HI 96813 USA.

Background: Parkinson's disease is a neurodegenerative disorder characterized pathologically by the loss of nigrostriatal dopamine neurons that project from the substantia nigra in the midbrain to the putamen and caudate nuclei, leading to the clinical features of bradykinesia, rigidity, and rest tremor. Oxidative stress from oxidized dopamine and related compounds may contribute to the degeneration characteristic of this disease.

Results: To investigate a possible role of the phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4) in protection from oxidative stress, we investigated GPX4 expression in postmortem human brain tissue from individuals with and without Parkinson's disease. In both control and Parkinson's samples, GPX4 was found in dopaminergic nigral neurons colocalized with neuromelanin. Overall GPX4 was significantly reduced in substantia nigra in Parkinson's vs. control subjects, but was increased relative to the cell density of surviving nigral cells. In putamen, GPX4 was concentrated within dystrophic dopaminergic axons in Parkinson's subjects, although overall levels of GPX4 were not significantly different compared to control putamen.

Conclusions: This study demonstrates an up-regulation of GPX4 in neurons of substantia nigra and association of this protein with dystrophic axons in striatum of Parkinson's brain, indicating a possible neuroprotective role. Additionally, our findings suggest this enzyme may contribute to the production of neuromelanin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1750-1326-6-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037910PMC
January 2011

Lysosomal degradation of alpha-synuclein in vivo.

J Biol Chem 2010 Apr 3;285(18):13621-9. Epub 2010 Mar 3.

The Parkinson's Institute, Sunnyvale, California 94085, USA.

Pathologic accumulation of alpha-synuclein is a feature of human parkinsonism and other neurodegenerative diseases. This accumulation may be counteracted by mechanisms of protein degradation that have been investigated in vitro but remain to be elucidated in animal models. In this study, lysosomal clearance of alpha-synuclein in vivo was indicated by the detection of alpha-synuclein in the lumen of lysosomes isolated from the mouse midbrain. When neuronal alpha-synuclein expression was enhanced as a result of toxic injury (i.e. treatment of mice with the herbicide paraquat) or transgenic protein overexpression, the intralysosomal content of alpha-synuclein was also significantly increased. This effect was paralleled by a marked elevation of the lysosome-associated membrane protein type 2A (LAMP-2A) and the lysosomal heat shock cognate protein of 70 kDa (hsc70), two essential components of chaperone-mediated autophagy (CMA). Immunofluorescence microscopy revealed an increase in punctate (lysosomal) LAMP-2A staining that co-localized with alpha-synuclein within nigral dopaminergic neurons of paraquat-treated and alpha-synuclein-overexpressing animals. The data provide in vivo evidence of lysosomal degradation of alpha-synuclein under normal conditions and, quite importantly, under conditions of enhanced protein burden. In the latter, increased lysosomal clearance of alpha-synuclein was mediated, at least in part, by CMA induction. It is conceivable that these neuronal mechanisms of protein clearance play an important role in neurodegenerative processes characterized by abnormal alpha-synuclein buildup.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109.074617DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859524PMC
April 2010

Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism.

Neurotoxicology 2009 Nov 2;30(6):1127-32. Epub 2009 Jul 2.

The Parkinson's Institute, 675 Almanor Ave., Sunnyvale, CA 94085, USA.

A growing body of experimental and clinical literature indicates an association between Gaucher disease and parkinsonism, raising the possibility that convergent mechanisms may contribute to neurodegeneration in these disorders. The aim of this study was to determine whether there is a relationship between alpha-synuclein (alpha-syn), a key protein in Parkinson's disease pathogenesis, and abnormalities in glucocerebroside (GC) catabolism that lead to the development of Gaucher disease. We inhibited glucocerebrosidase (GCase) with conduritol B epoxide (CBE) in neuroblastoma cells and mice to test whether a biological link exists between GCase activity and alpha-syn. After CBE exposure, enhanced alpha-syn protein was detected in differentiated cells challenged with CBE as compared to vehicle, with no change in alpha-syn mRNA. In the mouse model, after one injection of CBE, elevated nigral alpha-syn levels were also detected. Analyses by Western blot and confocal microscopy revealed that normal alpha-syn distribution was perturbed after CBE exposure with its accumulation apparent within nigral cell bodies as well as astroglia. These findings raise the possibility that alpha-syn may contribute to the cascade of events that promote neuronal dysfunction in Gaucher disease and are the first to implicate this protein as a plausible biological intersection between Gaucher disease and parkinsonism using a pharmacological model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuro.2009.06.009DOI Listing
November 2009

Increased vulnerability of nigrostriatal terminals in DJ-1-deficient mice is mediated by the dopamine transporter.

Neurobiol Dis 2007 Aug 3;27(2):141-50. Epub 2007 May 3.

Department of Basic Research, The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089, USA.

Mutations in the gene for DJ-1 have been associated with early-onset autosomal recessive parkinsonism. Previous studies of null DJ-1 mice have shown alterations in striatal dopamine (DA) transmission with no DAergic cell loss. Here we characterize a new line of DJ-1-deficient mice. A subtle locomotor deficit was present in the absence of a change in striatal DA levels. However, increased [(3)H]-DA synaptosomal uptake and [(125)I]-RTI-121 binding were measured in null DJ-1 vs. wild-type mice. Western analyses of synaptosomes revealed significantly higher dopamine transporter (DAT) levels in pre-synaptic membrane fractions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure exacerbated striatal DA depletion in null DJ-1 mice with no difference in DAergic nigral cell loss. Furthermore, increased 1-methyl-4-phenylpyridinium (MPP(+)) synaptosomal uptake and enhanced MPP(+) accumulation were measured in DJ-1-deficient vs. control striatum. Thus, under null DJ-1 conditions, DAT changes likely contribute to altered DA neurotransmission and enhanced sensitivity to toxins that utilize DAT for nigrostriatal entry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2007.03.014DOI Listing
August 2007

Model fusion, the next phase in developing animal models for Parkinson's disease.

Neurotox Res 2007 Apr;11(3-4):219-40

The Parkinson's Institute, 1170 Morse Ave., Sunnyvale, CA 94089, USA.

Within the past 25 years, discoveries of environmental and monogenetic forms of parkinsonism have shaped the direction of Parkinson's disease (PD) research and development of experimental systems to study PD. In this review, we outline a remarkable array of in vivo models available, with particular emphasis on their benefits and pitfalls and the contribution each has made to enhance our understanding of pathological mechanisms involved in PD. Further, we discuss the increasingly popular approach of "model fusion" to create a new generation of animal systems in which to study gene-environment interactions, and the usefulness of such models in capturing the most common events underlying PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03033569DOI Listing
April 2007

Lack of nigrostriatal pathology in a rat model of proteasome inhibition.

Ann Neurol 2006 Aug;60(2):256-60

Department of Basic Research, The Parkinson's Institute, Sunnyvale, CA, USA.

Systemic administration of ubiquitin-proteasome system inhibitors to rodents has been reported to induce certain behavioral and neuropathological features of Parkinson's disease. The goal of this study was to replicate these observations by administering a proteasome inhibitor (PSI) to rats using McNaught and colleagues' protocol. No alterations in locomotor activity or striatal dopamine and its metabolites were observed. Differences in nigral dopaminergic cell number between proteasome inhibitor- and vehicle-treated rats and inclusion bodies were not found. Extending the time of survival after administration and using different solvents failed to alter results, indicating this proteasome inhibitor does not consistently produce the selective toxicity and pathological hallmarks characterizing Parkinson's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.20938DOI Listing
August 2006

Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease.

FASEB J 2004 Jun 1;18(9):962-4. Epub 2004 Apr 1.

Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.

Protein deposition diseases involve the aggregation of normally soluble proteins, leading to both fibrillar and amorphous deposits. The aggregation of alpha-synuclein is associated with Parkinson's disease, and the aggregation of the Abeta peptide is associated with Alzheimer's disease. Here we show that L-dopa, dopamine, and other catecholamines dissolve fibrils of alpha-synuclein and Abeta peptide generated in vitro. The catecholamines also inhibited the fibrillation of these proteins. In addition, intraneuronal alpha-synuclein deposits formed in a mouse model were dissolved by incubation of tissue slices with L-dopa. These catecholamines are susceptible to oxidative breakdown, and we show that oxidation products are more effective than the parent compounds in inhibition. The ability to dissolve fibrils provides a new approach for studying mechanisms and consequences (e.g., the relationship between fibril formation and neurodegeneration) of protein aggregation. It is also likely to help in the development of strategies for the prevention and treatment of protein deposition diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.03-0770fjeDOI Listing
June 2004

Nuclear localization of alpha-synuclein and its interaction with histones.

Biochemistry 2003 Jul;42(28):8465-71

Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.

The aggregation of alpha-synuclein is believed to play an important role in the pathogenesis of Parkinson's disease as well as other neurodegenerative disorders ("synucleinopathies"). However, the function of alpha-synuclein under physiologic and pathological conditions is unknown, and the mechanism of alpha-synuclein aggregation is not well understood. Here we show that alpha-synuclein forms a tight 2:1 complex with histones and that the fibrillation rate of alpha-synuclein is dramatically accelerated in the presence of histones in vitro. We also describe the presence of alpha-synuclein and its co-localization with histones in the nuclei of nigral neurons from mice exposed to a toxic insult (i.e., injections of the herbicide paraquat). These observations indicate that translocation into the nucleus and binding with histones represent potential mechanisms underlying alpha-synuclein pathophysiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0341152DOI Listing
July 2003

Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration.

J Neurosci 2003 Apr;23(8):3095-9

The Parkinson's Institute, Sunnyvale, California 94089-1605, USA.

Alpha-synuclein is likely to play a role in neurodegenerative processes, including the degeneration of nigrostriatal dopaminergic neurons that underlies Parkinson's disease. However, the toxicological properties of alpha-synuclein remain relatively unknown. Here, the relationship between alpha-synuclein expression and neuronal injury was studied in mice exposed to the herbicide paraquat. Paraquat neurotoxicity was compared in control animals versus mice with transgenic expression of human alpha-synuclein driven by the tyrosine hydroxylase (TH) promoter. In control mice, paraquat caused both the formation of alpha-synuclein-containing intraneuronal deposits and the degeneration of nigrostriatal neurons, as demonstrated by silver staining and a reduction of the counts of TH-positive and Nissl-stained cells. Mice overexpressing alpha-synuclein, either the human wild-type or the Ala53Thr mutant form of the protein, displayed paraquat-induced protein aggregates but were completely protected against neurodegeneration. These resistant animals were also characterized by increased levels of HSP70, a chaperone protein that has been shown to counteract paraquat toxicity in other experimental models and could therefore contribute to neuroprotection in alpha-synuclein transgenic mice. The results indicate a dissociation between toxicant-induced alpha-synuclein deposition and neurodegeneration. They support a role of alpha-synuclein against toxic insults and suggest that its involvement in human neurodegenerative processes may arise not only from a gain of toxic function, as previously proposed, but also from a loss of defensive properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742319PMC
April 2003

Environmental factors in Parkinson's disease.

Neurotoxicology 2002 Oct;23(4-5):487-502

The Parkinson's Institute, Sunnyvale, CA 94089-1605, USA.

Evidence discussed in this review article lends strong support in favor of an etiologic role of environmentalfactors in Parkinson's disease. First, thanks to the discovery of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), it is now clear that, by targeting the nigrostriatal system, neurotoxicants can reproduce the neurochemical and pathological features of idiopathic parkinsonism. The sequence of toxic events triggered by MPTP has also provided us with intriguing clues concerning mechanisms of toxicant selectivity and nigrostriatal vulnerability. Relevant examples are (i) the role of the plasma membrane dopamine transporter in facilitating the access of potentially toxic species into dopaminergic neurons; (ii) the vulnerability of the nigrostriatal system to failure of mitochondrial energy metabolism; and (iii) the contribution of inflammatory processes to tissue lesioning. Epidemiological and experimental data suggest the potential involvement of specific agents as neurotoxicants (e.g. pesticides) or neuroprotective compounds (e.g. tobacco products) in the pathogenesis of nigrostriatal degeneration, further supporting a relationship between the environment and Parkinson's disease. A likely scenario that emerges from our current knowledge is that neurodegeneration results from multiple events and interactive mechanisms. These may include (i) the synergistic action of endogenous and exogenous toxins (e.g. the ability of the pesticide diethyldithiocarbamate to promote the toxicity of other compounds); (ii) the interactions of toxic agents with endogenous elements (e.g. the protein alpha-synuclein); (iii) the tissue response to an initial toxic insult; and, last but not least, (iv) the effects of environmental factors on the background of genetic predisposition and aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0161-813x(02)00099-2DOI Listing
October 2002

Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.

Neurobiol Dis 2002 Jul;10(2):119-27

The Parkinson's Institute, Sunnyvale, California 94089, USA.

Environmental toxicants and, in particular, pesticides have been implicated as risk factors in Parkinson's disease (PD). The purpose of this study was to determine if selective nigrostriatal degeneration could be reproduced by systemic exposure of mice to the widely used herbicide paraquat. Repeated intraperitoneal paraquat injections killed dopaminergic neurons in the substantia nigra (SN) pars compacta, as assessed by stereological counting of tyrosine hydroxylase (TH)-immunoreactive and Nissl-stained neurons. This cell loss was dose- and age-dependent. Several lines of evidence indicated selective vulnerability of dopaminergic neurons to paraquat. The number of GABAergic cells was not decreased in the SN pars reticulata, and counting of Nissl-stained neurons in the hippocampus did not reveal any change in paraquat-treated mice. Degenerating cell bodies were observed by silver staining, but only in the SN pars compacta, and glial response was present in the ventral mesencephalon but not in the frontal cortex and cerebellum. No significant depletion of striatal dopamine followed paraquat administration. On the other hand, enhanced dopamine synthesis was suggested by an increase in TH activity. These findings unequivocally show that selective dopaminergic degeneration, one of the pathological hallmarks of PD, is also a characteristic of paraquat neurotoxicity. The apparent discrepancy between pathological (i.e., neurodegeneration) and neurochemical (i.e., lack of significant dopamine loss) effects represents another important feature of this paraquat model and is probably a reflection of compensatory mechanisms by which neurons that survive damage are capable of restoring neurotransmitter tissue levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.2002.0507DOI Listing
July 2002

Decreased expression of the transcription factor NURR1 in dopamine neurons of cocaine abusers.

Proc Natl Acad Sci U S A 2002 Apr 16;99(9):6382-5. Epub 2002 Apr 16.

Department of Psychiatry and Behavioral Neurosciences, Pharmacology, and Pathology, Wayne State University School of Medicine, 2309 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA.

Chronic exposure to cocaine induces long-term adaptations that are likely to involve changes in transcription factor expression. This possibility has not been examined in the cocaine-exposed human brain. The transcription factor nurr1 is highly expressed in rodent midbrain dopamine neurons and is essential for their proper phenotypic development. Here we show that human NURR1 gene expression is robust within control subjects and reduced markedly within the dopamine neurons of human cocaine abusers. NURR1 is known to regulate transcription of the gene encoding the cocaine-sensitive dopamine transporter (DAT). We show here that DAT gene expression also is reduced markedly in the dopamine neurons of NURR1-deficient cocaine abusers, suggesting that NURR1 plays a critical role in vivo in controlling human DAT gene expression and adaptation to repeated exposure to cocaine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.092654299DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122957PMC
April 2002

The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein.

J Biol Chem 2002 Jan 13;277(3):1641-4. Epub 2001 Nov 13.

Parkinson's Institute, Sunnyvale, California 94089, USA.

alpha-Synuclein-containing aggregates represent a feature of a variety of neurodegenerative disorders, including Parkinson's disease (PD). However, mechanisms that promote intraneuronal alpha-synuclein assembly remain poorly understood. Because pesticides, particularly the herbicide paraquat, have been suggested to play a role as PD risk factors, the hypothesis that interactions between alpha-synuclein and these environmental agents may contribute to aggregate formation was tested in this study. Paraquat markedly accelerated the in vitro rate of alpha-synuclein fibril formation in a dose-dependent fashion. When mice were exposed to the herbicide, brain levels of alpha-synuclein were significantly increased. This up-regulation followed a consistent pattern, with higher alpha-synuclein at 2 days after each of three weekly paraquat injections and with protein levels returning to control values by day 7 post-treatment. Paraquat exposure was also accompanied by aggregate formation. Thioflavine S-positive structures accumulated within neurons of the substantia nigra pars compacta, and dual labeling and confocal imaging confirmed that these aggregates contained alpha-synuclein. The results suggest that up-regulation of alpha-synuclein as a consequence of toxicant insult and direct interactions between the protein and environmental agents are potential mechanisms leading to alpha-synuclein pathology in neurodegenerative disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C100560200DOI Listing
January 2002