Christopher W Armstrong - University of Melbourne

Christopher W Armstrong
Are you Christopher W Armstrong?

PubFacts is viewed by over 25,000 people per day (700,000 per month)!

Claim your profile, edit publications, view metrics, add additional information:

Contact Details

Name
Christopher W Armstrong
Affiliation
University of Melbourne
Country
Australia

Publications Authored By Christopher W Armstrong

2017Jan
J Clin Neurosci
J Clin Neurosci 2017 Jan 30;35:97-103. Epub 2016 Sep 30.
Dept. of Emergency Medicine, Royal Perth Hospital, Perth, WA, Australia; Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Level 6 MRF Building, 50 Murray St., Perth, WA 6000, Australia; Emergency Medicine, University of Western Australia, Perth, WA, Australia.

We previously reported on a 26-year-old patient who presented early during a large and eventually fatal cerebral infarct. Microarray analysis of blood samples from this patient demonstrated initially up-regulated and subsequently down-regulated Granzyme B (GzmB) expression, along with progressive up-regulation of genes for S100 calcium binding protein A12 (S100A12) and matrix metalloproteinase 9 (MMP-9). To confirm these findings, we investigated these parameters in patients with suspected stroke presenting within 6h of symptom onset to a single centre.Read More

Blood samples were taken at enrolment, then 1h, 3h and 24h post-enrolment for the examination of cellular, protein and genetic changes. Patients with subsequently confirmed ischaemic (n=18) or haemorrhagic stroke (n=11) showed increased intracellular concentrations of GzmB in all cell populations investigated (CD8(+), CD8(-) and Natural Killer [NK] cells). Infarct patients, however, demonstrated significantly reduced GzmB gene expression and increased circulating MMP-9 and S100A12 levels in contrast to transient ischaemic attack (TIA) patients or healthy controls. Furthermore, a pronounced neutrophilia was noted in the infarct and haemorrhage groups, while TIA patients (n=9) reflected healthy controls (n=10). These findings suggest a spectrum of immune response during stroke. TIA showed few immunological changes in comparison to infarct and haemorrhage, which demonstrated inhibition of GzmB production and a rise in neutrophil numbers and neutrophil-associated mediators. This implies a greater role of the innate immune system. These markers may provide novel targets for inhibition and reduction of secondary injury.

Chronic fatigue syndrome (CFS) is a poorly understood condition that presents as long-term physical and mental fatigue with associated symptoms of pain and sensitivity across a broad range of systems in the body. The poor understanding of the disorder comes from the varying clinical diagnostic definitions as well as the broad array of body systems from which its symptoms present. Studies on metabolism and CFS suggest irregularities in energy metabolism, amino acid metabolism, nucleotide metabolism, nitrogen metabolism, hormone metabolism, and oxidative stress metabolism.Read More

The overwhelming body of evidence suggests an oxidative environment with the minimal utilization of mitochondria for efficient energy production. This is coupled with a reduced excretion of amino acids and nitrogen in general. Metabolomics is a developing field that studies metabolism within a living system under varying conditions of stimuli. Through its development, there has been the optimisation of techniques to do large-scale hypothesis-generating untargeted studies as well as hypothesis-testing targeted studies. These techniques are introduced and show an important future direction for research into complex illnesses such as CFS.

2012Oct
Clin. Chim. Acta
Clin Chim Acta 2012 Oct 21;413(19-20):1525-31. Epub 2012 Jun 21.
Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.

Chronic fatigue syndrome (CFS) is a debilitating multisystem disorder characterised by long-term fatigue with a variety of other symptoms including cognitive dysfunction, unrefreshing sleep, muscle pain, and post-exertional malaise. It is a poorly understood condition that occurs in ~5 in every 1000 individuals. We present here a preliminary study on the analysis of blood samples from 11 CFS and 10 control subjects through NMR metabolic profiling.Read More

Identified metabolites that were found to be significantly altered between the groups were subjected to correlation analysis to potentially elucidate disturbed metabolic pathways. Our results showed a significant reduction of glutamine (P=0.002) and ornithine (P<0.05) in the blood of the CFS samples. Correlation analysis of glutamine and ornithine with other metabolites in the CFS sera showed relationships with glucogenic amino acids and metabolites that participate in the urea cycle. This indicates a possible disturbance to amino acid and nitrogen metabolism. It would be beneficial to identify any potential biomarkers of CFS for accurate diagnosis of the disorder.