3 results match your criteria neuroadaptation periphery

  • Page 1 of 1

Correction for Rife et al., Evolution of Neuroadaptation in the Periphery and Purifying Selection in the Brain Contribute to Compartmentalization of Simian Immunodeficiency Virus (SIV) in the Brains of Rhesus Macaques with SIV-Associated Encephalitis.

J Virol 2016 10 12;90(19):8947. Epub 2016 Sep 12.

Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA.

View Article and Full-Text PDF
October 2016

Cannabinoid receptor type-1: breaking the dogmas.

F1000Res 2016 24;5. Epub 2016 May 24.

Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France.

The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). Read More

View Article and Full-Text PDF

Evolution of Neuroadaptation in the Periphery and Purifying Selection in the Brain Contribute to Compartmentalization of Simian Immunodeficiency Virus (SIV) in the Brains of Rhesus Macaques with SIV-Associated Encephalitis.

J Virol 2016 07 10;90(13):6112-6126. Epub 2016 Jun 10.

Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA

Unlabelled: The emergence of a distinct subpopulation of human or simian immunodeficiency virus (HIV/SIV) sequences within the brain (compartmentalization) during infection is hypothesized to be linked to AIDS-related central nervous system (CNS) neuropathology. However, the exact evolutionary mechanism responsible for HIV/SIV brain compartmentalization has not been thoroughly investigated. Using extensive viral sampling from several different peripheral tissues and cell types and from three distinct regions within the brain from two well-characterized rhesus macaque models of the neurological complications of HIV infection (neuroAIDS), we have been able to perform in-depth evolutionary analyses that have been unattainable in HIV-infected subjects. Read More

View Article and Full-Text PDF
  • Page 1 of 1