Lab Chip 2020 11;20(22):4205-4214
Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA. and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA and Department of Radiology, University of California-Los Angeles, Los Angeles, CA 90095, USA and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA.
Microchannels in hydrogels play an essential role in enabling a smart contact lens. However, microchannels have rarely been created in commercial hydrogel contact lenses due to their sensitivity to conventional microfabrication techniques. Here, we report the fabrication of microchannels in poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels that are used in commercial contact lenses with a three-dimensional (3D) printed mold. Read More