BMC Genomics 2021 Apr 12;22(1):261. Epub 2021 Apr 12.
Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada.
Background: Increases in ocean temperatures and in the frequency and severity of hypoxic events are expected with climate change, and may become a challenge for cultured Atlantic salmon and negatively affect their growth, immunology and welfare. Thus, we examined how an incremental temperature increase alone (Warm & Normoxic-WN: 12 → 20 °C; 1 °C week), and in combination with moderate hypoxia (Warm & Hypoxic-WH: ~ 70% air saturation), impacted the salmon's hepatic transcriptome expr\ession compared to control fish (CT: 12 °C, normoxic) using 44 K microarrays and qPCR.
Results: Overall, we identified 2894 differentially expressed probes (DEPs, FDR < 5%), that included 1111 shared DEPs, while 789 and 994 DEPs were specific to WN and WH fish, respectively. Read More