Mater Sci Eng C Mater Biol Appl 2021 Apr 19;123:111978. Epub 2021 Feb 19.
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China. Electronic address:
Herein, we fabricated novel self-healing, in situ injectable, biodegradable, and non-toxic hydrogels anti-adhesion barrier materials composed of N, O-carboxymethyl chitosan (N,O-CS) and oxidized dextran (ODA) without requiring any chemical cross-linking agent or external stimuli triggers for the prevention and treatment of post-operative peritoneal adhesions. The N,O-CS/ODA hydrogels have a good suitable gelation time, good cytocompatibility and hemocompatibility, good antibacterial activity, excellent biodegradable and biocompatible, and can effectively inhibit the adhesion of fibroblasts to the wound, thereby suggesting that N,O-CS/ODA hydrogels are suitable for preventing post-operative adhesion. Meanwhile, a rat injury sidewall-cecum abrasion model is developed to investigate the efficacy of these hydrogels in achieving post-operative anti-adhesion. Read More