Search our Database of Scientific Publications and Authors

I’m looking for a

    823 results match your criteria Metabolic Disease & Stroke - MELAS

    1 OF 17

    Uncommon mutation in mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS).
    BMJ Case Rep 2017 Feb 27;2017. Epub 2017 Feb 27.
    Department of Neurology, Sligo University Hospital, Sligo, Ireland.
    A 26-year-old man presented to the emergency department with new-onset generalised tonic-clonic seizures. His clinical picture suggested either autoimmune or infectious encephalitis while his brain imaging raised the possibility of a stroke. A detailed developmental and childhood medical history added suspicion of a mitochondrial defect to the differential. Read More

    Adult-onset Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke (MELAS)-like Encephalopathy Diagnosed Based on the Complete Sequencing of Mitochondrial DNA Extracted from Biopsied Muscle without any Myopathic Changes.
    Intern Med 2017;56(1):95-99. Epub 2017 Jan 1.
    Department of Neurology, Tokai University School of Medicine, Japan.
    The clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) are not uniform. We herein report a male patient with unusual MELAS-like encephalopathy who had been experiencing isolated recurrent stroke-like episodes since he was 33 years old without any particular family history. Despite an extensive investigation, he had no other signs suggestive of MELAS. Read More

    Acquired Dysfibrinogenemia Caused by Autoantibody Inhibiting Fibrin Polymerization in a Patient with MELAS Syndrome and Bleeding Tendency.
    Ann Clin Lab Sci 2016 Dec;46(6):696-700
    Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
    We present a case of acquired dysfibrinogenemia caused by an autoantibody that inhibited fibrin polymerization in a patient previously diagnosed with MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes). The patient showed prolonged PT, aPTT, and thrombin time. There was no factor deficiency but fibrinogen antigen and activity were decreased. Read More

    The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model.
    Biochim Biophys Acta 2017 Jan 1;1863(1):284-291. Epub 2016 Nov 1.
    UMR CNRS 6214-INSERM U1083, Mitovasc Institute, Angers University, Angers, France; Biochemistry and Genetics Department, Angers Hospital, F-49000, France. Electronic address:
    Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m. Read More

    Posterior spinal instrumented fusion for idiopathic scoliosis in patients with multisystemic neurodegenerative disorder: a report of two cases.
    J Orthop Surg (Hong Kong) 2016 Aug;24(2):273-7
    Department of Orthopaedic Surgery, University of Malaya, Kuala Lumpur, Malaysia.
    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke (MELAS) syndrome is a progressive multisystemic neurodegenerative disorder. MELAS syndrome impairs oxidative phosphorylation and predisposes patients to lactic acidosis, particularly under metabolic stress. We report 2 siblings with MELAS-associated idiopathic scoliosis who underwent posterior spinal instrumented fusion with measures taken to minimise anaesthetic and surgical stress, blood loss, and operating time. Read More

    Stroke-like episodes, peri-episodic seizures, and MELAS mutations.
    Eur J Paediatr Neurol 2016 Nov 13;20(6):824-829. Epub 2016 Aug 13.
    Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
    Purpose: Stroke-like episodes (SLEs) are a hallmark of various mitochondrial disorders, in particular MELAS syndrome. SLEs manifest with vasogenic oedema (DWI and ADC hyperintensity) or partial cytotoxic oedema (DWI hyperintensity, ADC hypointensity) in the acute and subacute stage, and with gyriform T1-hyperintensity (cortical necrosis) in the chronic stage.

    Principal Results: SLEs must be clearly distinguished from ischaemic stroke, since management of these two entities is different. Read More

    Imaging of MELAS.
    Curr Pain Headache Rep 2016 Sep;20(9):54
    Neurovascular Imaging Research Core, Neuroscience Research Building, 635 Charles E Young Drive South, Suite 225, Los Angeles, CA, 90095-7334, USA.
    Mitochondrial diseases are multisystem disorders that frequently involve the central nervous system. The clinical presentation of these disorders may be challenging to differentiate from cerebrovascular disorders. Various imaging techniques are now available that provide a wide range of imaging modalities during initial clinical evaluation and throughout the disease course. Read More

    Movement disorders in mitochondrial diseases.
    Rev Neurol (Paris) 2016 Aug - Sep;172(8-9):524-529. Epub 2016 Jul 28.
    Service de neurologie, hôpital de Hautepierre, 1, avenue Molière, 67000 Strasbourg, France; Fédération de médecine translationnelle, 67000 Strasbourg, France.
    Mitochondrial diseases (MIDs) are a large group of heterogeneous disorders due to mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) genes, the latter encoding proteins involved in mitochondrial function. A multisystem clinical picture that involves several organs, including both the peripheral and central nervous systems, is a common presentation of MID. Movement disorders, even isolated ones, are not rare. Read More

    Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease.
    Mitochondrion 2016 Sep 27;30:162-7. Epub 2016 Jul 27.
    Institute for Neuroscience and Muscle Research and T.Y. Nelson Department of Neurology & Neurosurgery, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia.
    Introduction: Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions.

    Methods: Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Read More

    Audiological manifestations in mitochondrial encephalomyopathy lactic acidosis and stroke like episodes (MELAS) syndrome.
    Clin Neurol Neurosurg 2016 Sep 14;148:17-21. Epub 2016 Jun 14.
    CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India. Electronic address:
    Objectives: Reports of audiological manifestations in specific subgroups of mitochondrial disorders are limited. This study aims to describe the audiological findings in patients with MELAS syndrome and m.3243A>G mutation. Read More

    Mitochondrial Encephalopathy and Optic Neuropathy Due to m.10158 MT-ND3 Complex I Mutation Presenting in an Adult Patient: Case Report and Review of the Literature.
    Neurologist 2016 Jul;21(4):61-5
    *Harvard Medical School †Department of Neurology, Massachusetts General Hospital ‡Massachusetts Eye and Ear Infirmary, Neuro-Ophthalmology Service §Massachusetts General Hospital, Neuropathology Service, Boston, MA.
    Introduction: Establishing a diagnosis of mitochondrial disease in adults remains a clinician's challenge. We report a case of syndrome reminiscent of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) in an adult patient who carries m.10158T>C mutation in complex I respiratory chain gene MT-ND3 (mitochondrially encoded NADH dehydrogenase 3). Read More

    Clinical Pregenetic Screening for Stroke Monogenic Diseases: Results From Lombardia GENS Registry.
    Stroke 2016 Jul 31;47(7):1702-9. Epub 2016 May 31.
    From the Department of Cerebrovascular Disease, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.B., G.B.B., E.A.P., N.T.); Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom (H.S.M.); Department of Bio-Medical Informatics, University of Pavia, Pavia, Italy (S.Q.); Department of Inherited Cardiovascular Disease, Foundation IRCCS Policlinico San Matteo, Pavia, Italy (E.A., M.G.); Neurology Unit, Department of Neuroscience and Sensory Organs, Maggiore Policlinico Hospital Foundation IRCCS Ca' Granda, Milan, Italy (S.L., L.C.); Neurology and Stroke Unit, Department of Urgency (G.M., A.C.), Department of Genetics (C.C., G.G.), and Brain MRI 3T Research Center (P.V.), IRCCS Foundation Casimiro Mondino Neurological Institute, Pavia, Italy; Department of Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Foundation C, Besta Neurological Institute, Milan, Italy (F.T., C.G., S.B.); Department of Medical Genetics, Niguarda Ca' Granda Hospital, Milan, Italy (S.P., L.M.); Department of Genomics for Human Disease Diagnosis and Laboratory of Clinical Molecular Biology, IRCCS San Raffaele hospital, Milan, Italy (P.C., M.F.); University Vita-Salute, Milano, Italy (M.F.); Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy (S.C., D.R., G.P.C.); Neurology Unit, Department of Neuroscience and Sensory Organs, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico Milan, Milan, Italy (S.C., D.R., G.P.C.); Department of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy (M.T.B.); Center for amyloidosis, Department of medical Thecnologies, IRCCS Foundation San Matteo Policlinico, Pavia, Italy (L.O., G.M.); Vascular Neurology - Spedali Civili, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy (A. Pezzini, A. Padovani); Stroke Unit, Departmen
    Background And Purpose: Lombardia GENS is a multicentre prospective study aimed at diagnosing 5 single-gene disorders associated with stroke (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, Fabry disease, MELAS [mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes], hereditary cerebral amyloid angiopathy, and Marfan syndrome) by applying diagnostic algorithms specific for each clinically suspected disease

    Methods: We enrolled a consecutive series of patients with ischemic or hemorrhagic stroke or transient ischemic attack admitted in stroke units in the Lombardia region participating in the project. Patients were defined as probable when presenting with stroke or transient ischemic attack of unknown etiopathogenic causes, or in the presence of <3 conventional vascular risk factors or young age at onset, or positive familial history or of specific clinical features. Patients fulfilling diagnostic algorithms specific for each monogenic disease (suspected) were referred for genetic analysis. Read More

    Successful Glycemic Control Decreases the Elevated Serum FGF21 Level without Affecting Normal Serum GDF15 Levels in a Patient with Mitochondrial Diabetes.
    Tohoku J Exp Med 2016 ;239(2):89-94
    Department of Diabetes and Endocrinology, Osaka Red Cross Hospital.
    Mitochondrial diabetes mellitus is a subtype of diabetes linked to mutations in mitochondrial DNA. In patients with mitochondrial diabetes mellitus, the effect of glycemic control on the serum concentrations of fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) has not been evaluated. FGF21 and GDF15 have been reported to be useful biomarkers for the diagnosis and severity assessment of mitochondrial diseases like mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Read More

    Application of molecular imaging combined with genetic screening in diagnosing MELAS, diabetes and recurrent pancreatitis.
    Folia Neuropathol 2016 ;54(1):66-71
    Dr. Wang ZP, Department of Radiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China, e-mail:
    Aim: We report molecular imaging combined with gene diagnosis in a family with 7 members who carried an A3243G mutation in mitochondrial tRNA and p.Thr 137 Met in cationic trypsinogen (PRSS1) gene presented with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), diabetes, and recurrent pancreatitis.

    Material And Methods: DNA sequencing was used to detect and validate mitochondrial DNA and PRSS1. Read More

    Sigmoid volvulus in a patient with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS): a rare occurrence.
    BMJ Case Rep 2016 Mar 2;2016. Epub 2016 Mar 2.
    Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
    Mitochondrial diseases are rare and devastating, with a wide spectrum of clinical presentations and systemic symptoms. The majority of the published literature focuses on the neuromuscular manifestations and genetic components of this mitochondrial cytopathy, however, cardiac, renal, endocrine and gastrointestinal manifestations may also be present. The authors report a case detailing a 56-year-old woman's final hospitalisation from the gastrointestinal sequelae of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) (Co Q10 deficiency variant). Read More

    [Higher Brain Dysfunction in Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-Like Episodes (MELAS)].
    Brain Nerve 2016 Feb;68(2):151-7
    Department of Neurology, Showa University Fujigaoka Hospital.
    Stroke-like episodes are one of the cardinal features of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), and occur in 84-99% of the patients. The affected areas detected on neuroimaging do not have classical vascular distribution, and involve predominantly the temporal, parietal and occipital lobes. Thus, the neurological symptoms including higher brain dysfunction correlate with this topographical distribution. Read More

    Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation.
    Mol Genet Metab 2016 Apr 27;117(4):407-12. Epub 2016 Jan 27.
    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA. Electronic address:
    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. Read More

    Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-Like Episodes (MELAS): A Case Report and Critical Reappraisal of Treatment Options.
    Pediatr Neurol 2016 Mar 19;56:59-61. Epub 2015 Dec 19.
    Department of Neurology, Columbia University Medical Center, New York, New York.
    Importance: Stroke-like episodes signal progression and significant disability in the mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes syndrome. Arginine is widely used as a treatment for stroke-like episode, although there is little evidence for this intervention. We discuss the management of a patient with mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes who presented with a stroke-like episode. Read More

    A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease.
    PLoS One 2016 6;11(1):e0145500. Epub 2016 Jan 6.
    Mitochondrial Research Group, Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, United Kingdom.
    Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. Read More

    Clinical features of MELAS and its relation with A3243G gene point mutation.
    Int J Clin Exp Pathol 2015 1;8(10):13411-5. Epub 2015 Oct 1.
    Department of Neurology, Shanxi Province Children's Hospital Taiyuan 030001, Shanxi, China.
    Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) mostly occur in children. The point mutation A3243G of mitochondrial DNA (mtDNA) may work as a specific bio-marker for mitochondrial disorders. The related clinical features, however, may vary among individuals. Read More

    MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.
    Heart Fail Rev 2016 Jan;21(1):103-16
    Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada.
    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Read More

    [G14453A mutation in mitochondrial myopathy encephalomyopathy with lactic acidosis and stroke-like episodes].
    Zhonghua Yi Xue Za Zhi 2015 Aug;95(32):2623-5
    Department of Central Laboratory, Peking University First Hospital, Beijing 100034, China; Email:
    Objective: To analyz mitochondrial DNA mutation in one case of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS).

    Methods: The patient, a 10-years-old boy,clinically diagnosed as MELAS. The clinical information was collected, and the normal mitochondrial mutations (such as A3243G, A8344G, T8993G/C, G13513A etc) were excluded. Read More

    Low prevalence of patients with mitochondrial disease in the German/Austrian DPV diabetes registry.
    Eur J Pediatr 2016 May 15;175(5):613-22. Epub 2015 Dec 15.
    Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, German Center for Diabetes Research (DZD), 89081, Ulm, Germany.
    Unlabelled: The aim of this study was to characterize the phenotype and treatment of young patients (manifestation <30 years) with diabetes of mitochondrial origin (DMO), based on the German/Austrian DPV (Diabetes Patienten Verlaufsdokumentation) registry. Only 13 (0.02 %) of all patients with diabetes in this cohort were identified with DMO, mainly due to the Kearns-Sayre (n = 5), Pearson (n = 3), or mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome (n = 2). Read More

    Acta Clin Croat 2015 Sep;54(3):371-7
    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated monophasic inflammatory demyelinating disorder of the central nervous system which poses a diagnostic challenge. We report on six cases of different etiologies that mimicked the clinical and radiologic findings of ADEM. The cases were collected from four different reference hospitals in Turkey. Read More

    Frequency of MELAS main mutation in a phenotype-targeted young ischemic stroke patient population.
    J Neurol 2016 Feb 14;263(2):257-62. Epub 2015 Nov 14.
    Department of Neurology, New York University School of Medicine, New York, NY, USA.
    Mitochondrial diseases, predominantly mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), may occasionally underlie or coincide with ischemic stroke (IS) in young and middle-aged individuals. We searched for undiagnosed patients with MELAS in a target subpopulation of unselected young IS patients enrolled in the Stroke in Young Fabry Patients study (sifap1). Among the 3291 IS patients aged 18-55 years recruited to the sifap1 study at 47 centers across 14 European countries, we identified potential MELAS patients with the following phenotypic features: (a) diagnosed cardiomyopathy or (b) presence of two of the three following findings: migraine, short stature (≤165 cm for males; ≤155 cm for females), and diabetes. Read More

    When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis?
    Arq Neuropsiquiatr 2015 Nov;73(11):959-67
    Departamento de Clínica Médica, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
    Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a rare mitochondrial disorder. Diagnostic criteria for MELAS include typical manifestations of the disease: stroke-like episodes, encephalopathy, evidence of mitochondrial dysfunction (laboratorial or histological) and known mitochondrial DNA gene mutations. Clinical features of MELAS are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. Read More

    Obstetric complications in carriers of the m.3243A>G mutation, a retrospective cohort study on maternal and fetal outcome.
    Mitochondrion 2015 Nov 9;25:98-103. Epub 2015 Oct 9.
    Radboudumc Amalia Children's Hospital, Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Nijmegen, The Netherlands; Radboudumc, Department of Internal Medicine, Nijmegen, The Netherlands.
    Introduction: The mitochondrial DNA m.3243A>G mutation is the most prevalent mutation causing mitochondrial disease in adult patients. Aside from some case reports, there are no studies on obstetric complications in a cohort of m. Read More

    Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders.
    Biochim Biophys Acta 2016 Jan 26;1863(1):56-63. Epub 2015 Oct 26.
    ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, New South Wales, Australia. Electronic address:
    Hyperspectral imaging uses spectral and spatial image information for target detection and classification. In this work hyperspectral autofluorescence imaging was applied to patient olfactory neurosphere-derived cells, a cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Read More

    Advances in the Treatment of MELAS Syndrome: Could Cognitive Rehabilitation Have a Role?
    Appl Neuropsychol Adult 2016 21;23(1):61-4. Epub 2015 Sep 21.
    b Robotic and Behavioral Neurorehabilitation Laboratory , IRCCS Centro Neurolesi "Bonino-Pulejo" , Messina , Italy.
    Mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome (MELAS) is a rare inherited mitochondrial disorder, commonly due to the m.3243A>G mutation, which typically presents with seizures, headaches, and acute neurological stroke-mimicking deficits. At onset, there is often no general intellectual deterioration in these patients, although specific cognitive deficits in peculiar language domains, visual construction, attention, abstraction, or flexibility may be present. Read More

    [Genetic aspects of migraine].
    Zh Nevrol Psikhiatr Im S S Korsakova 2015 ;115(7):124-9
    Nizhny Novgorod State Medical Academy, Nizhny Novgorod.
    Migraine is a common disease characterized by severe headache with nausea, vomiting and hypersensitivity to sounds, light, smell. Neurological symptoms during aura period develop in 25% of patients. Genes responsible for migraine development have been identified. Read More

    Magnetic resonance imaging correlates of genetically characterized patients with mitochondrial disorders: A study from south India.
    Mitochondrion 2015 Nov 1;25:6-16. Epub 2015 Sep 1.
    Centre for Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.
    Background: Large studies analyzing magnetic resonance imaging correlates in different genotypes of mitochondrial disorders are far and few. This study sought to analyze the pattern of magnetic resonance imaging findings in a cohort of genetically characterized patients with mitochondrial disorders.

    Methods: The study cohort included 33 patients (age range 18 months-50 years, M:F - 0. Read More

    Clinical presentation, etiology, and outcome of stroke in children: A hospital-based study.
    Brain Dev 2016 Feb 2;38(2):204-8. Epub 2015 Sep 2.
    Department of Pediatrics, Division of Pediatric Cardiology, Faculty of Medicine, The University of Jordan, Jordan.
    Aim: To describe clinical presentations, etiologies, and outcomes of stroke in Jordanian children.

    Patients And Methods: We retrospectively reviewed the medical records of children diagnosed with ischemic stroke who presented to our clinic from January 2001 to June 2014. Patients with onset of stroke in the neonatal period were excluded. Read More

    [Characteristics of anesthesia in patients with MELAS syndrome: Case report of anesthesia in video-assisted thoracoscopy].
    Anaesthesist 2015 Oct 28;64(10):747-53. Epub 2015 Aug 28.
    Kliniken der Stadt Köln, Krankenhaus Merheim, Klinikum der Universität Witten/Herdecke, Ostmerheimer Str. 200, 51109, Köln, Deutschland.
    The mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is a disease triggered by a disorder in energy production within mitochondria. The cause of this syndrome is a mutation in the mitochondrial DNA where in 80% of cases an A-to-G mutation is present at nucleotide 3243 and with a prevalence of 18.4/100,000 in the population. Read More

    Molecular pathomechanisms and cell-type-specific disease phenotypes of MELAS caused by mutant mitochondrial tRNA(Trp).
    Acta Neuropathol Commun 2015 Aug 22;3:52. Epub 2015 Aug 22.
    Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
    Introduction: Numerous pathogenic mutations responsible for mitochondrial diseases have been identified in mitochondrial DNA (mtDNA)-encoded tRNA genes. In most cases, however, the detailed molecular pathomechanisms and cellular pathophysiology of these mtDNA mutations -how such genetic defects determine the variation and the severity of clinical symptoms in affected individuals- remain unclear. To investigate the molecular pathomechanisms and to realize in vitro recapitulation of mitochondrial diseases, intracellular mutant mtDNA proportions must always be considered. Read More

    Mitochondrial genetic analysis in a Chinese family suffering from both mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes and diabetes.
    Int J Clin Exp Pathol 2015 1;8(6):7022-7. Epub 2015 Jun 1.
    Department of Endocrinology, Qianfoshan Hospital, Shandong University 66 Jingshi Road, Jinan 250014, China.
    To investigate the mitochondrial mutations in patients suffering from both mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and maternally inherited diabetes. MELAS was confirmed by muscle biopsy performed from the biceps muscle of the proband. Mitochondrial DNA (mtDNA) was isolated from peripheral blood mononuclear cells. Read More

    Metabolic rescue in pluripotent cells from patients with mtDNA disease.
    Nature 2015 Aug 15;524(7564):234-8. Epub 2015 Jul 15.
    1] Center for Embryonic Cell and Gene Therapy, Oregon Health &Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive &Developmental Sciences, Oregon National Primate Research Center, Oregon Health &Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA.
    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Read More

    Mitochonic Acid 5 (MA-5), a Derivative of the Plant Hormone Indole-3-Acetic Acid, Improves Survival of Fibroblasts from Patients with Mitochondrial Diseases.
    Tohoku J Exp Med 2015 ;236(3):225-32
    Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine.
    Mitochondria are key organelles implicated in a variety of processes related to energy and free radical generation, the regulation of apoptosis, and various signaling pathways. Mitochondrial dysfunction increases cellular oxidative stress and depletes ATP in a variety of inherited mitochondrial diseases and also in many other metabolic and neurodegenerative diseases. Mitochondrial diseases are characterized by the dysfunction of the mitochondrial respiratory chain, caused by mutations in the genes encoded by either nuclear DNA or mitochondrial DNA. Read More

    Progress in Diagnosing Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes.
    Chin Med J (Engl) 2015 Jul;128(13):1820-5
    Department of Neurology; Center for Translational Research of Neurology Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China.
    Objective: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a progressive, multisystem affected mitochondrial disease associated with a number of disease-related defective genes. MELAS has unpredictable presentations and clinical course, and it can be commonly misdiagnosed as encephalitis, cerebral infarction, or brain neoplasms. This review aimed to update the diagnosis progress in MELAS, which may provide better understanding of the disease nature and help make the right diagnosis as well. Read More

    MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options.
    Mol Genet Metab 2015 Sep-Oct;116(1-2):4-12. Epub 2015 Jun 15.
    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. Electronic address:
    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. MELAS syndrome is a multi-organ disease with broad manifestations including stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing impairment, diabetes, and short stature. The most common mutation associated with MELAS syndrome is the m. Read More

    Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy.
    J Cardiovasc Magn Reson 2015 May 22;17:40. Epub 2015 May 22.
    Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, building A1, 48149, Münster, Germany.
    Background: Mitochondrial myopathies (MM) are a heterogeneous group of inherited conditions resulting from a primary defect in the mitochondrial respiratory chain with consecutively impaired cellular energy metabolism. Small sized studies using mainly electrocardiography (ECG) and echocardiography have revealed cardiac abnormalities ranging from conduction abnormalities and arrhythmias to hypertrophic or dilated cardiomyopathy in these patients. Recently, characteristic patterns of cardiac involvement were documented by cardiovascular magnetic resonance (CMR) in patients with chronic progressive external ophthalmoplegia (CPEO)/Kearns-Sayre syndrome (KSS) and with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS). Read More

    L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes) Syndrome.
    PLoS One 2015 20;10(5):e0127066. Epub 2015 May 20.
    Division of Neurology, Dept. of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada, M5G 1X8.
    Objective: To study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by (31)Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome.

    Methods: We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR)) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak)) using graded cycle ergometry and muscle metabolism using 31P-MRS. Read More

    Cerebral hyperperfusion and decreased cerebrovascular reactivity correlate with neurologic disease severity in MELAS.
    Mitochondrion 2015 May 21;22:66-74. Epub 2015 Mar 21.
    Division of Neurology, Dept. of Pediatrics, Hospital for Sick Children, The University of Toronto, Toronto, ON M5G 1X8, Canada; Dept. of Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, ON M5G 1X8, Canada. Electronic address:
    Objective: To study the mechanisms underlying stroke-like episodes (SLEs) in MELAS syndrome.

    Methods: We performed a case control study in 3 siblings with MELAS syndrome (m.3243A>G tRNA(Leu(UUR))) with variable % mutant mtDNA in blood (35 to 59%) to evaluate regional cerebral blood flow (CBF) and arterial cerebrovascular reactivity (CVR) compared to age- and sex-matched healthy study controls and a healthy control population. Read More

    Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation.
    Ann Otol Rhinol Laryngol 2015 May 18;124 Suppl 1:177S-83S. Epub 2015 Mar 18.
    Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
    Objectives: We present a family with a mitochondrial DNA 3243A>G mutation resulting in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), of which some members have hearing loss in which a novel mutation in the P2RX2 gene was identified.

    Methods: One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known nonsyndromic hearing loss genes were performed to identify the genetic causes of hearing loss. Read More

    Macular pattern dystrophy and homonymous hemianopia in MELAS syndrome.
    BMJ Case Rep 2015 Mar 12;2015. Epub 2015 Mar 12.
    Department of Ophthalmology, Centro de Investigaciones Médico-Sanitarias, Malaga, Malaga, Spain.
    We report an unusual association of a pattern dystrophy of the retinal pigment epithelium and homonymous hemianopia in a woman diagnosed with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome. Read More

    Early onset cardiomyopathy associated with the mitochondrial tRNALeu((UUR)) 3271T>C MELAS mutation.
    Biochem Biophys Res Commun 2015 Mar 11;458(3):601-4. Epub 2015 Feb 11.
    Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genova, Italy. Electronic address:
    Mitochondrial disorders are a heterogeneous group of diseases sharing a defect of the oxidative phosphorylation system. Point mutations in the mitochondrial DNA are a common cause of mitochondrial disorders and frequently affect the sequences encoding mitochondrial transfer RNAs. The m. Read More

    [Psychiatric disturbances in five patients with MELAS syndrome].
    Psychiatr Pol 2014 Sep-Oct;48(5):1035-45
    Objectives: Mitochondrial disorders of energetic metabolism (MD) represent a heterogeneous group of diseases manifesting at any age with a broad spectrum of clinical symptoms, including psychiatric disorders.

    Methods: The aim of the study was to characterize psychiatric symptoms and diagnoses in five patients with MELAS syndrome between the ages of 17 and 53 years.

    Results: Four of MELAS patients them harbored the prevalent mitochondrial DNA (mtDNA) mutation 3243A>G, and one patient had the mtDNA mutation 12706T>C. Read More

    1 OF 17