Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization.

Neuroimage 2006 Oct 27;32(4):1656-68. Epub 2006 Jul 27.

Department of Psychiatry and Human Behavior, University of California-Irvine, CA 92617, USA.

Scanner-to-scanner variability of activation in multicenter fMRI studies is often considered undesirable. The purpose of this investigation was to evaluate the effect of a new procedure, "smoothness equalization", on reducing scanner differences in activation effect size as part of a multicenter fMRI project (FIRST BIRN). Five subjects were sent to 9 centers (10 scanners) and scanned on 2 consecutive days using a sensorimotor fMRI protocol. High-field (4 T and 3 T) and low-field (1.5 T) scanners from three vendors (GE, Siemens, and Picker) were included. The activation effect size of the scanners for the detection of neural activation during a sensorimotor task was evaluated as the percent of temporal variance accounted for by our model (percent of variance accounted for or PVAF). Marked scanner effects were noted for both PVAF as well as the degree of smoothness of the raw and processed images. After smoothness equalization, there was a dramatic (low field) or consistent (high-field) reduction in scanner-to-scanner variation of activation. It was shown that the likely basis of the scanner differences in smoothness was differences in k-space filtering algorithms. This work highlights the need to account for differences in smoothness when comparing scanners on activation effect size in multicenter fMRI studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2006.03.062DOI Listing
October 2006
4 Reads

Publication Analysis

Top Keywords

multicenter fmri
16
activation size
12
differences smoothness
8
fmri studies
8
size multicenter
8
variance accounted
8
scanner differences
8
smoothness equalization
8
variability activation
8
activation multicenter
8
activation
7
smoothness
5
fmri
5
smoothness differences
4
included activation
4
size scanners
4
picker included
4
scanner-to-scanner variation
4
neural activation
4
activation sensorimotor
4

Similar Publications