Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging.

Arch Gen Psychiatry 2007 Nov;64(11):1229-40

Laboratory for Neurophysiology and Neuroimaging, Department of Psychiatry, Johann Wolfgang Goethe-University, and Max Planck Institute for Brain Research, Frankfurt, Germany.

Context: Working memory (WM) deficits in patients with schizophrenia have mainly been associated with prefrontal dysfunction. However, the contribution of perceptual deficits and abnormalities in sensory areas has not been explored. The present study closes this important gap in our understanding of WM dysfunction in schizophrenia by monitoring neural activity during WM encoding and retrieval with event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI).

Objective: To investigate the neurophysiological changes that contribute to WM impairment in early-onset schizophrenia at perceptual and cognitive stages using the ERP components P1, P3a, P370, and P570 and fMRI data from extrastriate visual areas.

Design: We conducted the study between June 1, 2003, and December 20, 2006. Electroencephalographic and fMRI data were acquired separately during a visual delayed discrimination task. Participants encoded up to 3 abstract shapes that were presented sequentially for 600 milliseconds each and decided after a 12-second delay whether a probe matched 1 of the sample stimuli.

Setting: Between-group study at an inpatient psychiatric hospital and outpatient psychiatric facilities.

Participants: Seventeen adolescents with early-onset schizophrenia according to DSM-IV criteria and 17 matched controls participated in the study.

Main Outcome Measures: Amplitude of the ERP components P1, P3a, P370, and P570 and the fMRI signal from extrastriate visual areas.

Results: The P1 amplitude was reduced in patients during encoding and retrieval. The P1 amplitude increased with WM load during encoding only in controls. In this group, a stronger P1 amplitude increase predicted better WM performance. The P1 reduction was mirrored by reduced activation of visual areas in patients in fMRI. The P370 amplitude during encoding and retrieval was also reduced in patients.

Conclusions: The P1 amplitude reduction indicates an early visual deficit in adolescents with schizophrenia. Our findings suggest that P1 is of particular relevance for successful WM encoding. Early visual deficits contribute to impaired WM in schizophrenia in addition to deficits in later memory-related processes.

Download full-text PDF

Source
http://dx.doi.org/10.1001/archpsyc.64.11.1229DOI Listing
November 2007
3 Reads

Publication Analysis

Top Keywords

encoding retrieval
12
erp components
8
components p3a
8
adolescents schizophrenia
8
p3a p370
8
event-related potentials
8
p370 p570
8
resonance imaging
8
magnetic resonance
8
functional magnetic
8
early-onset schizophrenia
8
early visual
8
p570 fmri
8
fmri data
8
working memory
8
extrastriate visual
8
visual
7
schizophrenia
7
amplitude
6
encoding
5

Similar Publications