Bioinspired soft robotics aims at reproducing the complex hierarchy and architecture of biological tissues within artificial systems to achieve the typical motility and adaptability of living organisms. The development of suitable fabrication approaches to produce monolithic bodies provided with embedded variable morphological and mechanical properties, typically encountered in nature, is still a technological challenge. Here we report on a novel manufacturing approach to produce three-dimensional functionally graded hydrogels (3D-FGHs) provided with a controlled porosity gradient conferring them variable stiffness.