Alternative lengthening of telomeres (ALT) is a recombination process that maintains telomeres in the absence of telomerase and helps cancer cells to survive. Yeast has been used as a robust model of ALT; however, the inability to determine the frequency and structure of ALT survivors hinders understanding of the ALT mechanism. Here, using population and molecular genetics approaches, we overcome these problems and demonstrate that contrary to the current view, both RAD51-dependent and RAD51-independent mechanisms are required for a unified ALT survivor pathway.