The ability to specify an adsorbed protein layer through the polymer chemistry design of immunomodulatory biomaterials is important when considering a desired immune response, such as reducing pro-inflammatory activity. Limited work has been undertaken to elucidate the role of monomer sequence in this process, when copolymeric systems are involved. In this study, we demonstrate the advantage of an alternating radical copolymerization strategy as opposed to a random statistical copolymerization to order monomers in the synthesis of degradable polar-hydrophobic-ionic polyurethanes (D-PHI), biomaterials originally designed to reduce inflammatory monocyte activation.