Combinatorial control of Spo11 alternative splicing by modulation of RNA polymerase II dynamics and splicing factor recruitment during meiosis.

Cell Death Dis 2020 04 17;11(4):240. Epub 2020 Apr 17.

Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.

Homologous recombination and chromosome segregation in meiosis rely on the timely expression of two splice variants of the endonuclease SPO11, named α and β, which respectively skip or include exon 2. However, in spite of its physiological importance, the mechanism underlying Spo11 alternative splicing in meiosis is still unknown. By screening the activity of factors that are predicted to bind the alternatively spliced region of Spo11, we identified hnRNPH as a key regulator of SPO11α splicing in mouse spermatocytes. Although hnRNPH was not upregulated in meiosis concomitantly with the switch in splicing, its recruitment to Spo11 pre-mRNA was favored by selective modulation of RNA polymerase II (RNAPII) phosphorylation and processivity in proximity of exon 2. The hnRNPH binding sites were localized near those of splicing factors that promote SPO11β splicing, suggesting that hnRNPH favors exon 2 skipping by competing out positive regulators. Indeed, hnRNPH binds proximal to a consensus motif for Sam68, a positive regulator of SPO11β splicing in vitro and in vivo, and it interferes with Sam68 binding to the Spo11 pre-mRNA. Thus, our work reveals that modulation of RNAPII dynamics in concert with hnRNPH recruitment exerts a combinatorial control of the timely regulated Spo11 splicing during meiosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41419-020-2443-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165175PMC
April 2020

Publication Analysis

Top Keywords

splicing
9
alternative splicing
8
splicing meiosis
8
spo11 pre-mrna
8
rna polymerase
8
spo11 alternative
8
combinatorial control
8
modulation rna
8
spo11β splicing
8
spo11
7
hnrnph
6
meiosis
5
processivity proximity
4
proximity exon
4
exon hnrnph
4
phosphorylation processivity
4
rnapii phosphorylation
4
selective modulation
4
polymerase rnapii
4
hnrnph binding
4

Similar Publications