De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation.

Am J Hum Genet 2020 04 19;106(4):570-583. Epub 2020 Mar 19.

Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models, and Therapeutics, BCM, Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX 77030, USA. Electronic address:

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.02.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118694PMC
April 2020

Publication Analysis

Top Keywords

eif2ak1 eif2ak2
12
deleterious variants
8
translation initiation
8
variants eif2ak1
8
white matter
8
initiation factor
8
regression setting
8
febrile illness
8
setting febrile
8
variants genes
8
developmental delay
8
eukaryotic translation
8
missense variants
8
eif2ak2 variants
8
variants
7
eif2ak2
7
hypertonia 6/9
4
6/9 involuntary
4
involuntary movements
4
7/9 hypertonia
4

Altmetric Statistics

Similar Publications