Bayesian Framework for Detecting Gene Expression Outliers in Individual Samples.

JCO Clin Cancer Inform 2020 02;4:160-170

Computational Genomics Laboratory, University of California, Santa Cruz, Santa Cruz, CA.

Purpose: Many antineoplastics are designed to target upregulated genes, but quantifying upregulation in a single patient sample requires an appropriate set of samples for comparison. In cancer, the most natural comparison set is unaffected samples from the matching tissue, but there are often too few available unaffected samples to overcome high intersample variance. Moreover, some cancer samples have misidentified tissues of origin or even composite-tissue phenotypes. Even if an appropriate comparison set can be identified, most differential expression tools are not designed to accommodate comparisons to a single patient sample.

Methods: We propose a Bayesian statistical framework for gene expression outlier detection in single samples. Our method uses all available data to produce a consensus background distribution for each gene of interest without requiring the researcher to manually select a comparison set. The consensus distribution can then be used to quantify over- and underexpression.

Results: We demonstrate this method on both simulated and real gene expression data. We show that it can robustly quantify overexpression, even when the set of comparison samples lacks ideally matched tissue samples. Furthermore, our results show that the method can identify appropriate comparison sets from samples of mixed lineage and rediscover numerous known gene-cancer expression patterns.

Conclusion: This exploratory method is suitable for identifying expression outliers from comparative RNA sequencing (RNA-seq) analysis for individual samples, and Treehouse, a pediatric precision medicine group that leverages RNA-seq to identify potential therapeutic leads for patients, plans to explore this method for processing its pediatric cohort.

Download full-text PDF

Source
http://dx.doi.org/10.1200/CCI.19.00095DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053807PMC
February 2020

Publication Analysis

Top Keywords

gene expression
12
comparison set
12
samples
10
appropriate comparison
8
individual samples
8
single patient
8
unaffected samples
8
expression outliers
8
samples method
8
comparison
6
expression
6
set
5
method
5
consensus background
4
background distribution
4
produce consensus
4
analysis individual
4
rediscover numerous
4
method data
4
distribution gene
4

Similar Publications