T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis.

Cells 2020 02 19;9(2). Epub 2020 Feb 19.

Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.

Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4 T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9020482DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7072830PMC
February 2020

Publication Analysis

Top Keywords

lineage-defining cytokines
8
helper cells
8
multiple sclerosis
8
cd4 cells
4
th22 associated
4
lymphocytes cd4
4
self-reactive lymphocytes
4
recruitment cns
4
cns self-reactive
4
cells high
4
cytokines chemokines
4
chemokines cns
4
cells cytokines
4
levels helper
4
th9 th22
4
high levels
4
caused recruitment
4
disorder caused
4
pathophysiology disease
4
disease validated
4

Similar Publications