Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation.

Elife 2020 Jan 16;9. Epub 2020 Jan 16.

Department of Pharmacology, The University of Illinois College of Medicine, Chicago, United States.

Blood vessels are lined by endothelial cells engaged in distinct organ-specific functions but little is known about their characteristic gene expression profiles. RNA-Sequencing of the brain, lung, and heart endothelial translatome identified specific pathways, transporters and cell-surface markers expressed in the endothelium of each organ, which can be visualized at http://www.rehmanlab.org/ribo. We found that endothelial cells express genes typically found in the surrounding tissues such as synaptic vesicle genes in the brain endothelium and cardiac contractile genes in the heart endothelium. Complementary analysis of endothelial single cell RNA-Seq data identified the molecular signatures shared across the endothelial translatome and single cell transcriptomes. The tissue-specific heterogeneity of the endothelium is maintained during systemic in vivo inflammatory injury as evidenced by the distinct responses to inflammatory stimulation. Our study defines endothelial heterogeneity and plasticity and provides a molecular framework to understand organ-specific vascular disease mechanisms and therapeutic targeting of individual vascular beds.

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.51413DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7002042PMC
January 2020

Publication Analysis

Top Keywords

single cell
8
vascular beds
8
endothelial cells
8
endothelial translatome
8
endothelial heterogeneity
8
endothelial
7
surrounding tissues
4
typically surrounding
4
inflammatory stimulation
4
tissues synaptic
4
synaptic vesicle
4
responses inflammatory
4
endothelium cardiac
4
brain endothelium
4
genes brain
4
vesicle genes
4
genes typically
4
express genes
4
maintained systemic
4
endothelium organ
4

Similar Publications