Mitochondria-coupled glucose phosphorylation develops after birth to modulate H O release and calcium handling in rat brain.

Authors:
Eduarda Lopes Martins
Eduarda Lopes Martins
Laboratory of Bioenergetics and Mitochondrial Physiology
Antonio Galina
Antonio Galina
Cidade Universitária
Brazil

J Neurochem 2019 Apr 18. Epub 2019 Apr 18.

Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H O ) and calcium (Ca ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H O  generation and Ca handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H O generation and Ca uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H O generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14705DOI Listing
April 2019
1 Read

Article Mentions


Provided by Crossref Event Data
twitter
Twitter:
April 24, 2019, 12:17 pm EST
twitter
Twitter:
April 24, 2019, 9:00 am EST
twitter
Twitter:
April 23, 2019, 10:04 pm EST
twitter
Twitter:
April 23, 2019, 8:17 pm EST

Publication Analysis

Top Keywords

intracellular signaling
8
efficient control
8
brain
6
modulation mitochondrial
4
day contrasts
4
mitochondrial  generation
4
mitochondrial
4
role modulation
4
contrasts sharply
4
proposed role
4
 generation handling
4
handling investigated
4
signals mitochondrial
4
mitochondrial context
4
development reaching
4
modulates signals
4
reaching plateau
4
investigated mthk
4
plateau day
4
mthk modulates
4

References

(Supplied by CrossRef)
Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria Dev
Bates T. E. et al.
Neurosci. 1994

Similar Publications