A genome-wide haploid genetic screen identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as factors supporting vaccinia virus infection.

Authors:
Rutger D Luteijn
Rutger D Luteijn
University Medical Center Utrecht
Vincent A Blomen
Vincent A Blomen
Whitehead Institute for Biomedical Research
United States
Ingo Drexler
Ingo Drexler
Technische Universität München
Germany
Thijn R Brummelkamp
Thijn R Brummelkamp
Netherlands Cancer Institute
Amsterdam | Netherlands

J Virol 2019 Apr 17. Epub 2019 Apr 17.

Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands

Vaccinia virus is a promising viral vaccine and gene delivery candidate, and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to Modified Vaccinia Virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2 and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical role of EXT1 in heparan sulfate synthesis and vaccinia virus infection was confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells, and are used as vaccine vector against tuberculosis, influenza, and coronaviruses.Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knock-out library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02160-18DOI Listing
April 2019
1 Read

Publication Analysis

Top Keywords

vaccinia virus
36
virus infection
24
host factors
24
virus
16
heparan sulfate
12
vaccinia
9
host
9
factors crucial
8
factors vaccinia
8
identify host
8
cells identify
8
sulfate synthesis
8
factors
7
infection
6
cells
5
dna viruses
4
smallpox vaccinia
4
virus smallpox
4
large dna
4
axlpoxviruses large
4

Similar Publications