Effects of high-intensity interval training on microvascular glycocalyx and associated microRNAs.

Am J Physiol Heart Circ Physiol 2019 Jun 12;316(6):H1538-H1551. Epub 2019 Apr 12.

Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany.

High-intensity interval training (HIIT) has been proposed to exert vasculoprotective effects. This study aimed to evaluate whether HIIT affects the microvasculature, including the endothelial glycocalyx barrier, and to identify associated microRNAs (miRNAs). Fifty healthy participants (23.1 ± 3.0 yr) performed a 4-wk 4 × 30-s all-out running HIIT. Sidestream dark-field imaging was performed at baseline and follow-up to detect changes of the sublingual microvasculature including the endothelial glycocalyx. Exercise parameters were determined by continuous running field test and documentation of high-intensity runs. miRNAs potentially associated with glycocalyx thickness were selected by structured literature search and blood samples for miRNA, and lactate measurements were drawn at baseline and follow-up HIIT. At baseline, a correlation between maximal exercise performance capacity and glycocalyx thickness (determined by perfused boundary region) was detected ( = 0.045,  = 0.303). Increased exercise performance at follow-up also correlated with glycocalyx thickness ( = 0.031,  = 0.416), and increased high-intensity sprinting speed was associated with an increased number of perfused vessels ( = 0.0129,  = 0.449). Literature search identified miR-143, -96-5p, and -24, which were upregulated by HIIT already at baseline and showed an association with peak blood lactate levels after sprints (all < 0.05). Moreover, increased baseline miR-143 levels predicted increased glycocalyx thickness at follow-up (AUC = 0.92, 95% confidence interval, 0.81-1.0, = 0.0008). Elevated resting miR-126 levels after the intervention were associated with cell-free versican mRNA levels. We conclude that HIIT induces changes in the endothelial glycocalyx of the microvasculature. Associated miRNAs such as miR-143 may represent a tool for monitoring early vasculoprotective adaptations to physical activity. High-intensity interval training is known to improve health-related fitness in general and in lifestyle-induced chronic diseases. To visualize microvasculature structure and to detect exercise-induced changes, sublingual sidestream dark-field imaging microscopy was used, and circulating miRNAs were measured. This study shows that exercise-induced changes correlate with associated circulating miRNA, which might be useful for monitoring vasculoprotective effects. Furthermore, sidestream dark-field imaging may represent a sensitive tool for the early detection of exercise-induced systemic vascular changes.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00751.2018DOI Listing

Still can't find the full text of the article?

We can help you send a request to the authors directly.
June 2019
2 Reads

Publication Analysis

Top Keywords

glycocalyx thickness
16
endothelial glycocalyx
12
dark-field imaging
12
interval training
12
sidestream dark-field
12
high-intensity interval
12
associated micrornas
8
vasculoprotective effects
8
including endothelial
8
microvasculature including
8
changes sublingual
8
exercise-induced changes
8
baseline follow-up
8
literature search
8
hiit baseline
8
glycocalyx
8
exercise performance
8
associated
7
hiit
6
baseline
5

References

(Supplied by CrossRef)

Similar Publications