Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: challenges and solutions.

Genet Med 2019 06 16;21(6):1345-1354. Epub 2018 Oct 16.

Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.

Purpose: Biomedical databases combining electronic medical records and phenotypic and genomic data constitute a powerful resource for the personalization of treatment. To leverage the wealth of information provided, algorithms are required that systematically translate the contained information into treatment recommendations based on existing genotype-phenotype associations.

Methods: We developed and tested algorithms for translation of preexisting genotype data of over 44,000 participants of the Estonian biobank into pharmacogenetic recommendations. We compared the results obtained by genome sequencing, exome sequencing, and genotyping using microarrays, and evaluated the impact of pharmacogenetic reporting based on drug prescription statistics in the Nordic countries and Estonia.

Results: Our most striking result was that the performance of genotyping arrays is similar to that of genome sequencing, whereas exome sequencing is not suitable for pharmacogenetic predictions. Interestingly, 99.8% of all assessed individuals had a genotype associated with increased risks to at least one medication, and thereby the implementation of pharmacogenetic recommendations based on genotyping affects at least 50 daily drug doses per 1000 inhabitants.

Conclusion: We find that microarrays are a cost-effective solution for creating preemptive pharmacogenetic reports, and with slight modifications, existing databases can be applied for automated pharmacogenetic decision support for clinicians.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0337-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752278PMC
June 2019
17 Reads

Publication Analysis

Top Keywords

pharmacogenetic recommendations
12
recommendations based
8
genome sequencing
8
sequencing exome
8
data 44000
8
exome sequencing
8
genotype data
8
pharmacogenetic
7
998% assessed
4
algorithms translation
4
tested algorithms
4
developed tested
4
assessed individuals
4
interestingly 998%
4
pharmacogenetic predictions
4
preexisting genotype
4
predictions interestingly
4
translation preexisting
4
associationsmethods developed
4
44000 participants
4

Similar Publications