Nat Neurosci 2018 Aug 16;21(8):1027-1037. Epub 2018 Jul 16.
Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
The protein kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca-dependent PKC isozymes are activated in dendritic spines during plasticity and, if so, how this synaptic activity is encoded by PKC. Here, using newly developed, isozyme-specific sensors, we demonstrate that classical isozymes are activated to varying degrees and with distinct kinetics. PKCα is activated robustly and rapidly in stimulated spines and is the only isozyme required for structural plasticity. This specificity depends on a PDZ-binding motif present only in PKCα. The activation of PKCα during plasticity requires both NMDA receptor Ca flux and autocrine brain-derived neurotrophic factor (BDNF)-TrkB signaling, two pathways that differ vastly in their spatiotemporal scales of signaling. Our results suggest that, by integrating these signals, PKCα combines a measure of recent, nearby synaptic plasticity with local synaptic input, enabling complex cellular computations such as heterosynaptic facilitation of plasticity necessary for efficient hippocampus-dependent learning.
Abstract Video
PKC? integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling
We have submitted your request - we will update you on status within the next 24 hours.
Sign up for further access to Scientific Publications and Authors!
PubFacts Points
What are PubFacts Points?
PubFacts points are rewards to PubFacts members, which allow you to better promote your profile and articles throughout PubFacts.com
How do I earn PubFacts Points?
Each member is given 50 PubFacts points upon signing up. You can earn additional points by completing 100% of your profile, creating and participating in discussions, and sharing other members research.
What can I do with PubFacts Points?
Currently, you can use PubFacts Points to promote and increase readership of your articles.