Alexander Sumich School of Social Sciences Irvine | United States
Sci Rep 2018 Jun 11;8(1):8912. Epub 2018 Jun 11.
Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, AUT Tower, 7th floor, 2 Wakefield Street, Auckland, 1010, New Zealand.
Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.
Abstract Video
Spiking neural networks recognize brain preferences to marketing stimuli before conscious perception
We have submitted your request - we will update you on status within the next 24 hours.
Sign up for further access to Scientific Publications and Authors!
PubFacts Points
What are PubFacts Points?
PubFacts points are rewards to PubFacts members, which allow you to better promote your profile and articles throughout PubFacts.com
How do I earn PubFacts Points?
Each member is given 50 PubFacts points upon signing up. You can earn additional points by completing 100% of your profile, creating and participating in discussions, and sharing other members research.
What can I do with PubFacts Points?
Currently, you can use PubFacts Points to promote and increase readership of your articles.