Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval.

Authors:
Honghuang Lin Jessica van Setten Albert V Smith Nathan A Bihlmeyer Helen R Warren Jennifer A Brody Farid Radmanesh Leanne Hall Niels Grarup Martina Müller-Nurasyid Thibaud Boutin Niek Verweij Henry J Lin Ruifang Li-Gao Marten E van den Berg Jonathan Marten Stefan Weiss Bram P Prins Jeffrey Haessler Leo-Pekka Lyytikäinen Hao Mei Tamara B Harris Lenore J Launer Man Li Alvaro Alonso Elsayed Z Soliman John M Connell Paul L Huang Lu-Chen Weng Heather S Jameson William Hucker Alan Hanley Nathan R Tucker Yii-Der Ida Chen Joshua C Bis Kenneth M Rice Colleen M Sitlani Jan A Kors Zhijun Xie Chengping Wen Jared W Magnani Christopher P Nelson Jørgen K Kanters Moritz F Sinner Konstantin Strauch Annette Peters Melanie Waldenberger Thomas Meitinger Jette Bork-Jensen Oluf Pedersen Allan Linneberg Igor Rudan Rudolf A de Boer Peter van der Meer Jie Yao Xiuqing Guo Kent D Taylor Nona Sotoodehnia Jerome I Rotter Dennis O Mook-Kanamori Stella Trompet Fernando Rivadeneira André Uitterlinden Mark Eijgelsheim Sandosh Padmanabhan Blair H Smith Henry Völzke Stephan B Felix Georg Homuth Uwe Völker Massimo Mangino Timothy D Spector Michiel L Bots Marco Perez Mika Kähönen Olli T Raitakari Vilmundur Gudnason Dan E Arking Patricia B Munroe Bruce M Psaty Cornelia M van Duijn Emelia J Benjamin Jonathan Rosand Nilesh J Samani Torben Hansen Stefan Kääb Ozren Polasek Pim van der Harst Susan R Heckbert J Wouter Jukema Bruno H Stricker Caroline Hayward Marcus Dörr Yalda Jamshidi Folkert W Asselbergs Charles Kooperberg Terho Lehtimäki James G Wilson Patrick T Ellinor Steven A Lubitz Aaron Isaacs

Circ Genom Precis Med 2018 05;11(5):e002037

Section of Computational Biomedicine (H.L.) and Section of Cardiovascular Medicine (E.J.B.), Department of Medicine, Boston University School of Medicine, MA. National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, MA (H.L., E.J.B.). Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, The Netherlands (J.v.S., F.W.A.). Icelandic Heart Association, Kopavogur (A.V.S., V.G.). Faculty of Medicine, University of Iceland, Reykjavik (A.V.S., V.G.). Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine (N.A.B.) and McKusick-Nathans Institute of Genetic Medicine (D.E.A.), Johns Hopkins University School of Medicine, Baltimore, MD. William Harvey Research Institute (H.R.W., P.B.M.) and NIHR Barts Cardiovascular Research Unit (H.R.W., P.B.M.), Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom. Cardiovascular Health Research Unit, Department of Medicine (J.A.B., J.C.B., C.M.S.), Department of Biostatistics (K.M.R.), Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology (N.S.), Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services (B.M.P.), and Cardiovascular Health Research Unit, Department of Epidemiology (S.R.H.), University of Washington, Seattle. Center for Human Genetic Research (F. Radmanesh, J.R.) and Cardiovascular Research Center (P.L.H., L.-C.W., H.S.J., W.H., A.H., N.R.T., P.T.E., S.A.L.), Massachusetts General Hospital, Boston. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA (L.-C.W., P.T.E., S.A.L.). Department of Cardiovascular Sciences, University of Leicester, United Kingdom (L.H., C.P.N., N.J.S.). NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, United Kingdom (L.H., C.P.N., N.J.S.). The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences (N.G., J.B.-J., O. Pedersen, T.H.), Laboratory of Experimental Cardiology (J.K.K.), and Department of Clinical Medicine, Faculty of Health and Medical Sciences (A.L.), University of Copenhagen, Denmark. Department of Medicine I, University Hospital Munich, Ludwig Maximilian's University Munich, Germany (M.M.-N., M.F.S., S.K.). Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany (K.S.). DZHK (German Cardiovascular Research Centre), Partner Site: Munich Heart Alliance, Germany (M.M.-N., M.F.S., A.P., T.M., S.K.). Institute of Genetic Epidemiology (M.M.-N., K.S.), Institute of Epidemiology II (A.P., M.W.), Research Unit of Molecular Epidemiology (M.W.), and Institute of Human Genetics (T.M.), Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany. Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (T.B., J.M., C.H.) and Usher Institute of Population Health Sciences and Informatics (I.R.), University of Edinburgh, United Kingdom. University of Groningen, University Medical Center Groningen, Department of Cardiology, The Netherlands (N.V., R.A.d.B., P.v.d.M., P.v.d.H.). Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (H.J.L., Y.-D.I.C., J.Y., X.G., K.D.T., J.I.R.). Department of Clinical Epidemiology (R.L.-G., D.O.M.-K.) and Department of Cardiology (S.T., J.W.J.), Leiden University Medical Center, The Netherlands. Department of Medical Informatics (M.E.v.d.B.), Human Genomics Facility (F. Rivadeneira), Human Genotyping Facility (A.U.), and Department of Epidemiology (M.E., B.H. Stricker), Erasmus MC, University Medical Center Rotterdam, The Netherlands. Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Germany (S.W., G.H., U.V.). DZHK (German Cardiovascular Research Centre), Partner Site Greifswald, Germany (S.W., H.V., S.B.F., U.V., M.D.). Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (J.H., C.K.). Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Life Sciences (L.-P.L., T.L.) and Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Life Sciences (M.K.), University of Tampere, Finland. Department of Data Science (H.M.) and Physiology and Biophysics (J.G.W.), University of Mississippi Medical Center, Jackson. Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD (T.B.H., L.J.L.). Division of Nephrology and Hypertension, Internal Medicine, School of Medicine, University of Utah, Salt Lake City (M.L.). Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA (A.A.). Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC (E.Z.S.). Medical Research Institute (J.M.C.) and Division of Population Health Sciences (B.H. Smith), Ninewells Hospital and Medical School, University of Dundee, United Kingdom. Department of Medical Informatics (J.A.K.) and Genetic Epidemiology Unit, Department of Epidemiology (C.M.v.D.), Erasmus MC, Rotterdam, The Netherlands. TCM Clinical Basis Institute, Zhejiang Chinese Medicine University, Hangzhou, China (Z.X., C.W.). Division of Cardiology, Department of Medicine, UPMC Heart and Vascular Institute, University of Pittsburgh, PA (J.W.M.). German Center for Diabetes Research, Neuherberg, Germany (A.P.). Institute of Human Genetics, Technische Universität München, Germany (T.M.). Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen (A.L.). Department of Clinical Experimental Research, Rigshospitalet, Denmark (A.L.). British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland (S.P.). Institute for Community Medicine (H.V.) and Department of Internal Medicine B (S.B.F., M.D.), University Medicine Greifswald, Germany. Department of Twin Research and Genetic Epidemiology, King's College London, United Kingdom (M.M., T.D.S.). Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands (M.L.B.). Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, CA (M.P.). Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Finland (O.T.R.). Kaiser Permanente Washington Health Research Institute, Kaiser Foundation Health Plan of Washington, Seattle (B.M.P., S.R.H.). Faculty of Medicine, University of Split, Croatia (O. Polasek). Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, United Kingdom (B.P.P., Y.J.). Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands (F.W.A.). Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom (F.W.A.). Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, United Kingdom; CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio) and Department of Biochemistry, Maastricht University, The Netherlands (A.I.).

Background: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequency variants also contribute to PR interval heritability.

Methods: We performed large-scale meta-analyses of the PR interval that included 83 367 participants of European ancestry and 9436 of African ancestry. We examined both common and rare variants associated with the PR interval.

Results: We identified 31 genetic loci that were significantly associated with PR interval after Bonferroni correction (<1.2×10), including 11 novel loci that have not been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based analysis, we found that multiple rare variants at (=5.9×10) and (=1.1×10) were associated with PR interval. locus also was implicated in the common variant analysis, whereas was a novel locus.

Conclusions: We identified common variants at 11 novel loci and rare variants within 2 gene regions that were significantly associated with PR interval. Our findings provide novel insights to the current understanding of atrioventricular conduction, which is critical for cardiac activity and an important determinant of health.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.117.002037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951629PMC
May 2018
46 Reads

Publication Analysis

Top Keywords

loci associated
8
associated interval
8
genetic loci
8
common rare
8
interval
5
genome-wide association
4
association studies
4
large-scale meta-analyses
4
function genome-wide
4
meta-analyses interval
4
heart function
4
83 367 participants
4
critical normal
4
normal heart
4
included 83 367
4
performed large-scale
4
interval included
4
identified dozen
4
variants contribute
4
interval unclear
4

References

(Supplied by CrossRef)

Similar Publications