Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination.

PLoS Biol 2018 04 30;16(4):e2004162. Epub 2018 Apr 30.

Cell Division and Neurogenesis, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France.

The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pbio.2004162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945229PMC
April 2018

Publication Analysis

Top Keywords

ventricular wall
12
prospective neurons
8
delamination process
8
commit differentiation
8
defer differentiation
8
reduce apical
8
apical surface
8
notch signaling
8
notch
7
differentiation
5
junctions fail
4
fail reduce
4
disassemble junctions
4
nascent neurons
4
blockade nascent
4
surface disrupted
4
neurons disassemble
4
weakens junctional
4
eventually leads
4
leads breaches
4

Altmetric Statistics

Similar Publications