Laboratory for Circuit and Behavioral Physiology, RIKEN Brain Science Institute, Wakoshi, Saitama 351-0198, Japan.
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Abstract Video
Deep brain stimulation realized with the help of nanoparticles
We have submitted your request - we will update you on status within the next 24 hours.
Sign up for further access to Scientific Publications and Authors!
PubFacts Points
What are PubFacts Points?
PubFacts points are rewards to PubFacts members, which allow you to better promote your profile and articles throughout PubFacts.com
How do I earn PubFacts Points?
Each member is given 50 PubFacts points upon signing up. You can earn additional points by completing 100% of your profile, creating and participating in discussions, and sharing other members research.
What can I do with PubFacts Points?
Currently, you can use PubFacts Points to promote and increase readership of your articles.