Helichrysetin Induces DNA Damage that Triggers JNK-Mediated Apoptosis in Ca Ski Cells.

Authors:
Ho Yen Fong
Ho Yen Fong
University of Malaya
Saiful Anuar Karsani
Saiful Anuar Karsani
University of Malaya
Malaysia

Pharmacogn Mag 2017 Oct-Dec;13(52):607-612. Epub 2017 Nov 13.

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Background: Cervical cancer has become one of the most common cancers in women and currently available treatment options for cervical cancer are very limited. Naturally occurring chalcones and its derivatives have been studied extensively as a potential anticancer agent in different types of cancer and helichrysetin is naturally occurring chalcone that possess potent antiproliferative activity toward human cancer cells.

Materials And Methods: Inhibitory activity of helichrysetin was evaluated at different concentrations. Ability of helichrysetin to induce apoptosis and its relation with c-Jun N-terminal kinase (JNK)-mediated mechanism of apoptosis was assessed using flow cytometry and Western blotting.

Results: Helichrysetin inhibited Ca Ski cells at half maximal inhibitory concentration 30.62 ± 0.38 μM. This compound has the ability to induce DNA damage, mitochondrial membrane disruption, and loss of cell membrane integrity. We have shown that apoptosis was induced through the activation of JNK-mediated apoptosis by DNA damage in the cells then triggering p53-downstream apoptotic pathway with increased expression of pro-apoptotic proteins, Bax and caspase 3, and suppression of Bcl-2 anti-apoptotic protein. DNA damage in the cells also caused phosphorylation of protein ataxia-telangiectasia mutated, an activator of DNA damage response.

Conclusion: We conclude that helichrysetin can inhibit Ca Ski cells through DNA damage-induced JNK-mediated apoptotic pathway highlighting the potential of this compound as anticancer agent for cervical cancer.

Summary: Helichrysetin induced DNA damage in Ca Ski cellsDNA damage caused JNK-mediated phosphorylation of p53 resulting in p53-mediated apoptosisHelichrysetin is a potential DNA damage inducing agent through JNK activation to kill human cervical carcinoma cells. ATM: Ataxia-telangiectasia mutated, DAPI: 4',6-diamidino-2-phenylindole, DMSO: Dimethyl sulfoxide, FITC: Fluorescein isothiocyanate, IC: Half maximal inhibitory concentration, JC1-5,5',6,6'-Tetrachloro: 1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide, JNK: c-Jun N-terminal kinase, MMP: Mitochondrial membrane potential, PBS: Phosphate-buffered saline, SRB: Sulforhodamine B, TUNEL: Terminal deoxynucleotidyl transferase dUTP nick labeling.

Download full-text PDF

Source
http://dx.doi.org/10.4103/pm.pm_53_17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701399PMC
November 2017
6 Reads

Publication Analysis

Top Keywords

dna damage
28
ski cells
12
ataxia-telangiectasia mutated
8
anticancer agent
8
mitochondrial membrane
8
damage cells
8
half maximal
8
c-jun n-terminal
8
n-terminal kinase
8
apoptotic pathway
8
naturally occurring
8
cervical cancer
8
jnk-mediated apoptosis
8
inhibitory concentration
8
damage
8
dna
8
maximal inhibitory
8
helichrysetin
7
cells
6
jnk-mediated
5

Similar Publications