Dysfunction of Myosin Light-Chain 4 (MYL4) Leads to Heritable Atrial Cardiomyopathy With Electrical, Contractile, and Structural Components: Evidence From Genetically-Engineered Rats.

J Am Heart Assoc 2017 Oct 28;6(11). Epub 2017 Oct 28.

Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China

Background: There is increasing interest in the concept of atrial cardiomyopathy, but the underlying molecular and mechanistic determinants remain poorly defined. We identified a family with heritable atrial cardiomyopathy manifesting as progressive atrial-selective electromechanical dysfunction, tachyarrhythmias, and bradyarrhythmias requiring pacemaker implantation. Myosin light-chain 4 (), encoding the atrial-selective essential myosin light chain, was identified as a candidate gene. We used genetically modified rat models to investigate the role of in atrial cardiomyopathy.

Methods And Results: Exome sequencing and systematic bioinformatic analyses identified a rare missense variant of (c.31G>A []) in a large multiplex atrial cardiomyopathy family pedigree. The mutation cosegregated with atrial standstill (selected as the principal presenting trait) with a logarithm of the odds score of 5.3. The phenotype of rats with mutation knock-in confirmed the causative role of the mutation. knockout rats showed a similar atrial cardiomyopathy phenotype, whereas rats with an adjacent 4-amino-acid deletion showed no phenotype. Both knock-in rats and knockout rats showed progressive atrial electrophysiological, contractile, and fibrotic abnormalities, similar to affected patients. Biochemical analyses of mutation rats showed activation of proapoptotic and profibrotic signaling, along with increased atrial-cardiomyocyte terminal deoxynucleotidyl transferase dUTP nick end labeling staining, suggesting enhanced apoptotic cell death, findings that were mimicked by in vitro adenoviral transfer of the mutant gene to neonatal-rat cardiomyocytes.

Conclusions: Loss-of-function gene variants cause progressive atrial cardiomyopathy in humans and rats. Our findings identify as a key gene required for atrial contractile, electrical and structural integrity. These results improve our understanding of the molecular basis of atrial cardiomyopathy and introduce new models for further mechanistic analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.117.007030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5721782PMC
October 2017
26 Reads

Publication Analysis

Top Keywords

atrial cardiomyopathy
28
atrial
11
knockout rats
8
rats
8
heritable atrial
8
phenotype rats
8
myosin light-chain
8
progressive atrial
8
cardiomyopathy
7
cardiomyopathy phenotype
4
4-amino-acid deletion
4
adjacent 4-amino-acid
4
rats adjacent
4
rats atrial
4
confirmed causative
4
causative role
4
role mutation
4
mutation knockout
4
deletion phenotype
4
rats progressive
4

References

(Supplied by CrossRef)

Similar Publications