Independent Maternal and Fetal Genetic Effects on Midgestational Circulating Levels of Environmental Pollutants.

G3 (Bethesda) 2017 04 3;7(4):1287-1299. Epub 2017 Apr 3.

Department of Psychiatry, Weill Institute for Neurosciences and Institute for Human Genetics, University of California, San Francisco, California 94143

Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but negative associations with offspring ASD outcome. We report the first large-scale maternal and fetal genetic study of the midpregnancy serum levels of a set of 21 organohalogens in a subset of 790 genotyped women and 764 children collected in California by the Early Markers for Autism (EMA) Project. Levels of PCB (polychlorinated biphenyl) and PBDE (polybrominated diphenyl ether) congeners showed high maternal and fetal estimated SNP-based heritability ( ) accounting for 39-99% of the total variance. Genome-wide association analyses identified significant maternal loci for p,p'-DDE ( = 7.8 × 10) in the gene and for BDE-28 ( = 3.2 × 10) near the gene, both involved in xenobiotic and lipid metabolism. Fetal genetic loci contributed to the levels of BDE-100 ( = 4.6 × 10) and PCB187 ( = 2.8 × 10), near the potential metabolic genes and , previously implicated in neurodevelopment. Negative associations were observed for BDE-100, BDE153, and the sum of PBDEs with ASD, partly explained by genome-wide additive genetic effects that predicted PBDE levels. Our results support genetic control of midgestational biomarkers for environmental exposures by nonoverlapping maternal and fetal genetic determinants, suggesting that future studies of environmental risk factors should take genetic variation into consideration. The independent influence of fetal genetics supports previous hypotheses that fetal genotypes expressed in placenta can influence maternal physiology and the transplacental transfer of organohalogens.

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.117.039784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386877PMC
April 2017
11 Reads

Publication Analysis

Top Keywords

fetal genetic
16
maternal fetal
16
environmental pollutants
8
negative associations
8
genetic
8
genetic effects
8
fetal
8
maternal
7
levels
5
metabolism fetal
4
xenobiotic lipid
4
lipid metabolism
4
involved xenobiotic
4
gene bde-28
4
loci pp'-dde
4
maternal loci
4
pp'-dde gene
4
genetic loci
4
bde-28 gene
4
gene involved
4

References

(Supplied by CrossRef)
Human platelet 12-lipoxygenase: naturally occurring Q261/R261 variants and N544L mutant show altered activity but unaffected substrate binding and membrane association behavior.
Aleem et al.
Int. J. Mol. Med. 2009

Similar Publications