Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor.

ACS Appl Mater Interfaces 2017 Mar 28;9(10):8490-8497. Epub 2017 Feb 28.

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.

The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (k and k) and the dissociation constant (K) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b15077DOI Listing
March 2017
20 Reads

Publication Analysis

Top Keywords

cellular responsive
8
molecular recognition
8
responsive protein
8
dna repair
8
damaged dna
8
probing dynamic
8
tight binding
8
recognition
6
cispt-dna
5
nonspecific adsorption
4
adsorption calculated
4
resist nonspecific
4
mercaptohexanol introduced
4
calculated kinetic
4
introduced resist
4
cysteamine mercaptohexanol
4
dissociation constant
4
recognition tight
4
binding hmgb1a
4
hmgb1a cispt-dna
4

Similar Publications