Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation.

Environ Health 2016 11 24;15(1):111. Epub 2016 Nov 24.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Background: Ultraviolet B (UV-B) radiation plays a multifaceted role in human health, inducing DNA damage and representing the primary source of vitamin D for most humans; however, current U.S. UV exposure models are limited in spatial, temporal, and/or spectral resolution. Area-to-point (ATP) residual kriging is a geostatistical method that can be used to create a spatiotemporal exposure model by downscaling from an area- to point-level spatial resolution using fine-scale ancillary data.

Methods: A stratified ATP residual kriging approach was used to predict average July noon-time erythemal UV (UV) (mW/m) biennially from 1998 to 2012 by downscaling National Aeronautics and Space Administration (NASA) Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) gridded remote sensing images to a 1 km spatial resolution. Ancillary data were incorporated in random intercept linear mixed-effects regression models. Modeling was performed separately within nine U.S. regions to satisfy stationarity and account for locally varying associations between UV and predictors. Cross-validation was used to compare ATP residual kriging models and NASA grids to UV-B Monitoring and Research Program (UVMRP) measurements (gold standard).

Results: Predictors included in the final regional models included surface albedo, aerosol optical depth (AOD), cloud cover, dew point, elevation, latitude, ozone, surface incoming shortwave flux, sulfur dioxide (SO), year, and interactions between year and surface albedo, AOD, cloud cover, dew point, elevation, latitude, and SO. ATP residual kriging models more accurately estimated UV at UVMRP monitoring stations on average compared to NASA grids across the contiguous U.S. (average mean absolute error [MAE] for ATP, NASA: 15.8, 20.3; average root mean square error [RMSE]: 21.3, 25.5). ATP residual kriging was associated with positive percent relative improvements in MAE (0.6-31.5%) and RMSE (3.6-29.4%) across all regions compared to NASA grids.

Conclusions: ATP residual kriging incorporating fine-scale spatial predictors can provide more accurate, high-resolution UV estimates compared to using NASA grids and can be used in epidemiologic studies examining the health effects of ambient UV.

Download full-text PDF

Source Listing
November 2016
46 Reads

Publication Analysis

Top Keywords

atp residual
residual kriging
nasa grids
compared nasa
aod cloud
kriging models
elevation latitude
spatial resolution
cover dew
spatiotemporal exposure
point elevation
cloud cover
dew point
surface albedo
latitude atp


(Supplied by CrossRef)
Article in Lancet Oncol
F Ghissassi El et al.
Lancet Oncol 2009
Article in Atmos Ocean
J Kerr et al.
Atmos Ocean 2008
Article in Altern Med Rev
WB Grant et al.
Altern Med Rev 2005
Article in N Engl J Med
MF Holick et al.
N Engl J Med 2007
Article in J Pharmacol Pharmacother
R Nair et al.
J Pharmacol Pharmacother 2012
Article in Dermatoendocrinol
WB Grant et al.
Dermatoendocrinol 2016
Article in J Photochem Photobiol B Biol
V Fioletov et al.
J Photochem Photobiol B Biol 2010

J Scotto et al.
Article in Cartogr Geogr Inf Sci
Z Tatalovich et al.
Cartogr Geogr Inf Sci 2006
Article in Atmos Chem Phys
Y Roberts et al.
Atmos Chem Phys 2013
Article in Int J Cancer
DM Freedman et al.
Int J Cancer 2010

Similar Publications