EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

Stem Cell Reports 2016 Mar 18;6(3):396-410. Epub 2016 Feb 18.

Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China. Electronic address:

Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stemcr.2016.01.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788774PMC
March 2016
16 Reads

Publication Analysis

Top Keywords

embryonic neurogenesis
20
eva1a depletion
12
neural stem
12
self-renewal differentiation
8
stem cell
8
regulates embryonic
8
autophagy
6
neurogenesis
6
eva1a
5
embryonic
5
target rapamycin
4
rapamycin subsequent
4
mammalian target
4
autophagy addition
4
methylpyruvate culture
4
culture neural
4
addition methylpyruvate
4
activation mammalian
4
inhibition autophagy
4
subsequent inhibition
4

Similar Publications