CXCL12-CXCR4 Axis Promotes Proliferation, Migration, Invasion, and Metastasis of Ovarian Cancer.

Authors:
Qing Guo
Qing Guo
Dalian Institute of Chemical Physics
China
Guo-Chao Liu
Guo-Chao Liu
State Key Laboratory of Silkworm Genome Biology
Feng Xu
Feng Xu
Durham, NH | United States
Shao-jing Zhang
Shao-jing Zhang
First Hospital
China
Bo Yang
Bo Yang
Southwest Hospital
Oklahoma City | United States

Oncol Res 2014 ;22(5-6):247-58

Department of Obstetrics and Gynecology, Shijiazhuang First Hospital, Hebei Medical University, Shijiazhuang, China.

The CXCL12-CXCR4 chemokine axis may play a very important role in ovarian cancer cells proliferation, migration, invasion, and peritoneal metastasis in vitro and in vivo. In this study, transfected SKOV3-CXCR4, transfected vector SKOV3-negative, nontransfected SKOV3 ovarian cancer cells, and human peritoneal mesothelial cells (HPMCs) were cultivated in vitro, and the proliferation, migration, and invasion of these ovarian cancer cells were investigated with or without the influence of the CXCL12-CXCR4 axis. Nude mice models of ovarian cancer were created by injection of ovarian cancer cells into the peritoneal cavity for investigation of ovarian cancer cells metastasis. Our results demonstrated that in the SKOV3-CXCR4 group, the cell number of proliferation, migration, or penetration through the Matrigel membrane treated with CXCL12 was significantly (p < 0.05) greater than those treated with CXCR4 antibody or CXCR4 antagonist AMD 3100 in a concentration-dependent manner. In the SKOV3-negative and the nontransfected SKOV3 groups, no significant (p > 0.05) differences existed in the cell number of proliferation, migration, or penetration. Coculture of HPMCs and SKOV3-CXCR4 had significantly (p < 0.05) higher migration and invasion rates than the SKOV3-CXCR4-only group. In nude mice seeded with ovarian cancer cells, the tumor weight in the nude mice injected with SKOV3-CXCR4 cells was significantly (p < 0.05) greater than in the group injected with the SKOV3-negative or nontransfected SKOV3 cells. Taken together, our results show that the CXCL12-CXCR4 chemokine axis can significantly promote the proliferation, migration, invasion, and peritoneal metastasis of ovarian cancer cells, and interference with this axis may serve as a new therapeutic target in treating ovarian cancers.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096504015X14343704124430DOI Listing

Still can't find the full text of the article?

We can help you send a request to the authors directly.
July 2016
12 Reads
0.920 Impact Factor

Publication Analysis

Top Keywords

ovarian cancer
28
proliferation migration
20
cancer cells
20
migration invasion
12
migration penetration
8
cxcl12-cxcr4 axis
8
cell number
8
number proliferation
8
ovarian
7
cancer
7
cells
6
migration
5
proliferation
5
invasion ovarian
4
vitro proliferation
4
cells investigated
4
treated cxcl12
4
cultivated vitro
4
influence cxcl12-cxcr4
4
investigated influence
4

Similar Publications