Varying Surface Chemistries for p-Doped and n-Doped Silicon Nanocrystals and Impact on Photovoltaic Devices.

ACS Appl Mater Interfaces 2015 Dec 16;7(51):28207-14. Epub 2015 Dec 16.

Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), Ulster University , Shore Road, Jordanstown BT37 0QB, U.K.

Doping of quantum confined nanocrystals offers unique opportunities to control the bandgap and the Fermi energy level. In this contribution, boron-doped (p-doped) and phosphorus-doped (n-doped) quantum confined silicon nanocrystals (SiNCs) are surface-engineered in ethanol by an atmospheric pressure radio frequency microplasma. We reveal that surface chemistries induced on the nanocrystals strongly depend on the type of dopants and result in considerable diverse optoelectronic properties (e.g., photoluminescence quantum yield is enhanced more than 6 times for n-type SiNCs). Changes in the position of the SiNCs Fermi levels are also studied and implications for photovoltaic application are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b06577DOI Listing
December 2015
29 Reads
6.723 Impact Factor

Publication Analysis

Top Keywords

silicon nanocrystals
8
quantum confined
8
surface chemistries
8
sincs changes
4
sincs surface-engineered
4
surface-engineered ethanol
4
ethanol atmospheric
4
n-type sincs
4
times n-type
4
pressure radio
4
atmospheric pressure
4
changes position
4
position sincs
4
boron-doped p-doped
4
contribution boron-doped
4
p-doped phosphorus-doped
4
phosphorus-doped n-doped
4
nanocrystals sincs
4
confined silicon
4
n-doped quantum
4

Similar Publications