Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification.

Forensic Sci Int Genet 2015 Nov 29;19:212-220. Epub 2015 Jul 29.

DNA Analysis Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Philippines; Program on Forensics and Ethnicity, Philippine Genome Center, National Science Complex, University of the Philippines, Diliman, Quezon City, Philippines.

The capability of DNA laboratories to perform genotyping procedures from post-mortem remains, including those that had undergone putrefaction, continues to be a challenge in the Philippines, a country characterized by very humid and warm conditions all year round. These environmental conditions accelerate the decomposition of human remains that were recovered after a disaster and those that were left abandoned after a crime. When considerable tissue decomposition of human remains has taken place, there is no other option but to extract DNA from bone and/or teeth samples. Routinely, femur shafts are obtained from recovered bodies for human identification because the calcium matrix protects the DNA contained in the osteocytes. In the Philippines, there is difficulty in collecting femur samples after natural disasters or even human-made disasters, because these events are usually characterized by a large number of fatalities. Identification of casualties is further delayed by limitation in human and material resources. Hence, it is imperative to test other types of biological samples that are easier to collect, transport, process and store. We analyzed DNA that were obtained from body fluid, bone marrow, muscle tissue, clavicle, femur, metatarsal, patella, rib and vertebral samples from five recently deceased untreated male cadavers and seven male human remains that were embalmed, buried for ∼ 1 month and then exhumed. The bodies had undergone different environmental conditions and were in various stages of putrefaction. A DNA extraction method utilizing a detergent-washing step followed by an organic procedure was used. The utility of bone marrow and vitreous fluid including bone marrow and vitreous fluid that was transferred on FTA(®) cards and subjected to autosomal STR and Y-STR DNA typing were also evaluated. DNA yield was measured and the presence or absence of PCR inhibitors in DNA extracts was assessed using Plexor(®)HY. All samples were amplified using PowerPlex(®)21 and PowerPlexY(®)23 systems and analyzed using the AB3500 Genetic Analyzer and the GeneMapper(®) ID-X v.1.2 software. PCR inhibitors were consistently detected in bone marrow, muscle tissue, rib and vertebra samples. Amplifiable DNA was obtained in a majority of the samples analyzed. DNA recovery from 0.1g biological material was adequate for successful genotyping of most of the non-bone and bone samples. Complete DNA profiles were generated from bone marrow, femur, metatarsal and patella with 0.1 ng DNA template. Using 0.5 ng DNA template resulted in increased allele recovery and improved intra- and inter-locus peak balance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsigen.2015.07.017DOI Listing
November 2015
45 Reads
2 Citations
4.604 Impact Factor

Publication Analysis

Top Keywords

bone marrow
20
dna
14
human remains
12
samples
9
dna template
8
marrow vitreous
8
environmental conditions
8
metatarsal patella
8
femur metatarsal
8
marrow muscle
8
muscle tissue
8
vitreous fluid
8
analyzed dna
8
decomposition human
8
pcr inhibitors
8
bone
7
human
6
marrow
5
dna body
4
fluid bone
4

Similar Publications