Comparing the effects of excess copper in the leaves of Brassica juncea (L. Czern) and Brassica napus (L.) seedlings: Growth inhibition, oxidative stress and photosynthetic damage.

Acta Biol Hung 2015 Jun;66(2):205-21

1Department of Life Sciences and Bioinformatics, Assam University , Silchar-788 011, Assam , India.

Hydroponic experiments were conducted to compare the effects of excess copper (Cu) on growth and photosynthesis in young Indian mustard (Brassica juncea) and oilseed rape (Brassica napus). We compared the effects of excess Cu on the two Brassica species at different physiological levels from antioxidant levels to photosynthetic activity. Nine-day-old plants were treated with Cu (10, 25 and 50 μM CuSO4) for 7 and 14 days. Both species took up Cu from the external solution to a similar degree but showed slight root-to-shoot translocation. Furthermore, after seven days of treatment, excess Cu significantly decreased other microelement content, such as iron (Fe) and manganese (Mn), especially in the shoots of B. napus. As a consequence, the leaves of young Brassica napus plants showed decreased concentrations of photosynthetic pigments and more intense growth inhibition; however, accumulation of highly reactive oxygen species (hROS) were not detected. After 14 days of Cu exposure the reduction of Fe and Mn contents and shoot growth proved to be comparable in the two species. Moreover, a significant Cu-induced hROS accumulation was observed in both Brassica species. The diminution in pigment contents and photosynthetic efficiency were more pronounced in B. napus during prolonged Cu exposure. Based on all the parameters, B. juncea appears to be more resistant to excess Cu than B. napus, rendering it a species with higher potential for phytoremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1556/018.66.2015.2.7DOI Listing
June 2015
36 Reads

Publication Analysis

Top Keywords

effects excess
12
brassica napus
12
brassica juncea
8
growth inhibition
8
excess copper
8
brassica species
8
brassica
7
species
6
napus
6
excess
5
iron manganese
4
days treatment
4
contents photosynthetic
4
translocation days
4
slight root-to-shoot
4
root-to-shoot translocation
4
treatment excess
4
excess decreased
4
diminution pigment
4
microelement content
4

Similar Publications