Search our Database of Scientific Publications and Authors

I’m looking for a

    Details and Download Full Text PDF:
    Epigenetic reprogramming of melanoma cells by vitamin C treatment.

    Clin Epigenetics 2015 29;7:51. Epub 2015 Apr 29.
    John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA.
    Background: The loss of 5-hydroxymethylcytosine (5hmC) has been identified as a novel epigenetic hallmark for melanoma. One of the known mechanisms underlying the loss of 5hmC is the decrease in expression of ten-eleven translocation family dioxygenase (TET) genes, which encode enzymes that catalyze the generation of 5hmC. Overexpressing TET2 was shown to partially reestablish a normal 5hmC profile in melanoma and decrease invasiveness in rodents. However, the feasibility to overexpress TETs in patients remains unclear. We and others have recently demonstrated that TETs require vitamin C as a cofactor to generate 5hmC. This finding prompted us to test whether vitamin C, as an alternative to overexpressing TETs, could rebuild 5hmC content in melanoma.

    Results: Consistent with previous reports, we found that the expression of TETs was decreased in various melanoma cell lines. In contrast, the expressions of sodium-dependent vitamin C transporters (SVCTs) were down-regulated in cell lines derived from melanoma metastases. Treatment of vitamin C at the physiological level (0.1 mM) promoted the content of 5hmC in melanoma cell lines derived from different stages toward the level of healthy melanocytes, which was comparable to the effect of overexpressing TET2. Vitamin C treatment decreased the malignancy of metastatic A2058 cells by inhibiting migration and anchorage-independent growth, while not exerting any effect on the rate of proliferation. Further, vitamin C treatment caused alterations in genome-wide transcriptions shown by RNA-seq, predominantly in ArhGAP30 and genes involved in extracellular matrix remodeling, which could underlie the decreased malignant phenotypes.

    Conclusions: Our data support the idea that vitamin C treatment increases 5hmC content in melanoma cells, while causing a decrease in tumor-cell invasiveness and clonogenic growth in soft agar. Thus, vitamin C could be a potential epigenetic treatment for melanoma.
    PDF Download - Full Text Link
    ( Please be advised that this article is hosted on an external website not affiliated with
    Source Status ListingPossible

    Similar Publications

    Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate.
    Biochem Biophys Res Commun 2013 Oct 8;439(4):522-7. Epub 2013 Sep 8.
    John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
    Tet (ten-eleven translocation) methylcytosine dioxygenases, which belong to the iron and 2-oxoglutarate (2OG)-dependent dioxygenase superfamily, convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. We recently reported that ascorbate (vitamin C) induces Tet-mediated generation of 5hmC. To initially delineate the role of ascorbate on 5hmC generation, we analyzed whether the effect of ascorbate is dependent upon the conditions of other components involved in the hydroxylation of 5mC catalyzed by Tet. Read More
    Genetic Characterization of Ten-Eleven-Translocation Methylcytosine Dioxygenase Alterations in Human Glioma.
    J Cancer 2015 15;6(9):832-42. Epub 2015 Jul 15.
    Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, D-81377 Munich, Bavaria, Germany.
    The molecular mechanisms leading to brain tumors still remain unclear. Nevertheless, there is increasing evidence that epigenetic effects play crucial roles in tumor development and progression. Thereby, 5-hydroxymethylcytosine (5hmC) represents a further base modification of cytosine besides 5-methylcytosine (5mC). Read More
    Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma.
    Clin Epigenetics 2015 11;7:98. Epub 2015 Sep 11.
    Eberhard-Karls University Tübingen, BG Trauma Clinic, SWI, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
    Background: Global deregulation of DNA methylation is one of the crucial causes of hepato cellular carcinoma (HCC). It has been reported that the anti-cancer drug 5-azacytidine (5-AZA) mediates the activation of tumor suppressor genes through passive demethylation by inhibiting DNMT1. Recent evidence suggests that active demethylation which is mediated by ten-eleven translocation (TET) proteins may also be an important step to control global methylation. Read More
    Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Genome Biol 2014 Jun 23;15(6):R81. Epub 2014 Jun 23.
    Background: The TET family of dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), but their involvement in establishing normal 5mC patterns during mammalian development and their contributions to aberrant control of 5mC during cellular transformation remain largely unknown. We depleted TET1, TET2, and TET3 in a pluripotent embryonic carcinoma cell model and examined the impact on genome-wide 5mC, 5hmC, and transcriptional patterns.

    Results: TET1 depletion yields widespread reduction of 5hmC, while depletion of TET2 and TET3 reduces 5hmC at a subset of TET1 targets suggesting functional co-dependence. Read More