Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase.

J Biol Chem 2015 Apr 24;290(15):9674-89. Epub 2015 Feb 24.

From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and

The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1-20) and H4(1-20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M115.636894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392268PMC
April 2015
30 Reads

Publication Analysis

Top Keywords

histone fold
8
repeat protein
8
protein substrate
8
catalytic domain
8
histone
8
arginine methyltransferase
8
prmt5
8
mep50
6
protein
6
appreciable protein
4
protein methyltransferase
4
unmethylated substrates
4
domain appreciable
4
distributive model
4
prmt5 catalytic
4
efficiently compared
4
prmt5-mep50 efficiently
4
substrates consistent
4
activity histones
4
histones bind
4

Similar Publications